February  2017, 37(2): 663-683. doi: 10.3934/dcds.2017028

Stability criteria for multiphase partitioning problems with volume constraints

Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Athens, Greece

* Corresponding author: A. Faliagas

Received  June 2015 Revised  February 2016 Published  November 2016

Fund Project: The first author was partially supported through the project PDEGE (Partial Differential Equations Motivated by Geometric Evolution), co-financed by the European Union European Social Fund (ESF) and national resources, in the framework of the program Aristeia of the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF).

We study the stability of partitions involving two or more phases in convex domains under the assumption of at most two-phase contact, thus excluding in particular triple junctions. We present a detailed derivation of the second variation formula with particular attention to the boundary terms, and then study the sign of the principal eigenvalue of the Jacobi operator. We thus derive certain stability criteria, and in particular we recapture the Sternberg-Zumbrun result on the instability of the disconnected phases in the more general setting of several phases.

Citation: N. Alikakos, A. Faliagas. Stability criteria for multiphase partitioning problems with volume constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 663-683. doi: 10.3934/dcds.2017028
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003. Google Scholar

[2]

N. D. AlikakosP. W. BatesJ. W. CahnP. C. FifeG. Fusco and G. B. Tanoglu, Analysis of a corner layer problem in anisotropic interfaces, Discrete Cont. Dyn.-B, 6 (2006), 237-255.   Google Scholar

[3]

F. J. Jr. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. , 4 (1976), ⅷ+199pp. Google Scholar

[4]

P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., 53 (1993), 990-1008.  doi: 10.1137/0153049.  Google Scholar

[5]

P. W. Bates and P. C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations and time scales for coarsening, Physica D, 43 (1990), 335-348.  doi: 10.1016/0167-2789(90)90141-B.  Google Scholar

[6]

G. Caginalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries, SIAM J. Appl. Math., 48 (1988), 506-518.  doi: 10.1137/0148029.  Google Scholar

[7]

R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. Ⅰ Interscience Publishers, New York, 1953. Google Scholar

[8]

D. Depner and H. Garcke, Linearized stability analysis of surface diffusion for hypersurfaces with triple lines, Hokkaido Math. J, 42 (2013), 11-52.  doi: 10.14492/hokmj/1362406637.  Google Scholar

[9]

S.-I. EiR. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems, Interface Free Bound., 1 (1999), 57-80.  doi: 10.4171/IFB/4.  Google Scholar

[10]

P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces CBMS-NSF Regional Conference Series in Applied Mathematics, 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988. Google Scholar

[11]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin-New York, 1979. Google Scholar

[12]

P. C. Fife, A. Liñán and F. Williams (Editors), Dynamical Issues in Combustion Theory, Proceedings of the Workshop held in Minneapolis, Minnesota, November 1989 The IMA Volumes in Mathematics and its Applications, 35, Springer-Verlag, New York, 1991. Google Scholar

[13]

H. GarckeK. Ito and Y. Kohsaka, Linearized stability analysis of stationary solutions for surface diffusion with boundary conditions, SIAM J. Math. Anal., 36 (2005), 1031-1056.  doi: 10.1137/S0036141003437939.  Google Scholar

[14]

R. Ikota and E. Yanagida, Stability of stationary interfaces of binary-tree type, Calc. Var. PDE, 22 (2005), 375-389.  doi: 10.1007/s00526-004-0281-x.  Google Scholar

[15]

R. Ikota and E. Yanagida, A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential Integral Equations, 16 (2003), 707-726.   Google Scholar

[16]

W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27 (1956), 900-904.  doi: 10.1063/1.1722511.  Google Scholar

[17]

J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Ration. Mech. An., 89 (1985), 1-19.  doi: 10.1007/BF00281743.  Google Scholar

[18]

J. C. C. Nitsche, Corrigendum to: Stationary partitioning of convex bodies Arch. Ration. Mech. An. 95 (1986), p389. Google Scholar

[19]

H.-K. Rajni, Aqueous two-phase systems, Mol. Biotechnol, 19 (2001), 269-277.   Google Scholar

[20]

L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, 1983. Google Scholar

[21]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.   Google Scholar

[22]

E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces Princeton University Press, Princeton, 1971. Google Scholar

[23]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth Edition, Springer, 2008. Google Scholar

[24]

B. White, Existence of least-energy configurations of immiscible fluids, J. Geom. Anal, 6 (1996), 151-161.  doi: 10.1007/BF02921571.  Google Scholar

[25] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781139171755.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003. Google Scholar

[2]

N. D. AlikakosP. W. BatesJ. W. CahnP. C. FifeG. Fusco and G. B. Tanoglu, Analysis of a corner layer problem in anisotropic interfaces, Discrete Cont. Dyn.-B, 6 (2006), 237-255.   Google Scholar

[3]

F. J. Jr. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. , 4 (1976), ⅷ+199pp. Google Scholar

[4]

P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., 53 (1993), 990-1008.  doi: 10.1137/0153049.  Google Scholar

[5]

P. W. Bates and P. C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations and time scales for coarsening, Physica D, 43 (1990), 335-348.  doi: 10.1016/0167-2789(90)90141-B.  Google Scholar

[6]

G. Caginalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries, SIAM J. Appl. Math., 48 (1988), 506-518.  doi: 10.1137/0148029.  Google Scholar

[7]

R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. Ⅰ Interscience Publishers, New York, 1953. Google Scholar

[8]

D. Depner and H. Garcke, Linearized stability analysis of surface diffusion for hypersurfaces with triple lines, Hokkaido Math. J, 42 (2013), 11-52.  doi: 10.14492/hokmj/1362406637.  Google Scholar

[9]

S.-I. EiR. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems, Interface Free Bound., 1 (1999), 57-80.  doi: 10.4171/IFB/4.  Google Scholar

[10]

P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces CBMS-NSF Regional Conference Series in Applied Mathematics, 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988. Google Scholar

[11]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin-New York, 1979. Google Scholar

[12]

P. C. Fife, A. Liñán and F. Williams (Editors), Dynamical Issues in Combustion Theory, Proceedings of the Workshop held in Minneapolis, Minnesota, November 1989 The IMA Volumes in Mathematics and its Applications, 35, Springer-Verlag, New York, 1991. Google Scholar

[13]

H. GarckeK. Ito and Y. Kohsaka, Linearized stability analysis of stationary solutions for surface diffusion with boundary conditions, SIAM J. Math. Anal., 36 (2005), 1031-1056.  doi: 10.1137/S0036141003437939.  Google Scholar

[14]

R. Ikota and E. Yanagida, Stability of stationary interfaces of binary-tree type, Calc. Var. PDE, 22 (2005), 375-389.  doi: 10.1007/s00526-004-0281-x.  Google Scholar

[15]

R. Ikota and E. Yanagida, A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential Integral Equations, 16 (2003), 707-726.   Google Scholar

[16]

W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27 (1956), 900-904.  doi: 10.1063/1.1722511.  Google Scholar

[17]

J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Ration. Mech. An., 89 (1985), 1-19.  doi: 10.1007/BF00281743.  Google Scholar

[18]

J. C. C. Nitsche, Corrigendum to: Stationary partitioning of convex bodies Arch. Ration. Mech. An. 95 (1986), p389. Google Scholar

[19]

H.-K. Rajni, Aqueous two-phase systems, Mol. Biotechnol, 19 (2001), 269-277.   Google Scholar

[20]

L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, 1983. Google Scholar

[21]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.   Google Scholar

[22]

E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces Princeton University Press, Princeton, 1971. Google Scholar

[23]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth Edition, Springer, 2008. Google Scholar

[24]

B. White, Existence of least-energy configurations of immiscible fluids, J. Geom. Anal, 6 (1996), 151-161.  doi: 10.1007/BF02921571.  Google Scholar

[25] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781139171755.  Google Scholar
Figure 1.  Three-phase partitioning of a set $\Omega$. Subsets painted with the same color contain material of the same phase. Interfaces ($M_{1},\cdots,M_{4}$) and subsets $(\Omega_{1},\cdots,\Omega_{5})$ are identified by successive indexing. Phases are enumerated in the same way: yellow is 1, green is 2, and cyan is 3. An alternative, more convenient for the calculations, identification scheme of subsets is shown in parentheses: the first index corresponds to a phase and the second enumerates the connected components of the subsets occupied by that phase; for example $\Omega_{12}(\equiv\Omega_{4})$ is the second connected component of phase 1. For connected phases (i.e. those occupying a single connected subset) we omit, for brevity, the second index; e.g. $\Omega_{31}\equiv\Omega_{3}$
Figure 2.  Disconnected 3-phase partitioning. Differently shaded regions correspond to different phases. The notation is as in Figure 1. The phases are from left to right 1, 2, 3, and 1 (see first index of notation in parentheses). $N_{i}$ is the unit normal field of interface $M_{i}$ (in the indicated orientation)
[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[5]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[6]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[13]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (55)
  • Cited by (2)

Other articles
by authors

[Back to Top]