
-
Previous Article
On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$
- DCDS Home
- This Issue
-
Next Article
Stability criteria for multiphase partitioning problems with volume constraints
A non-local bistable reaction-diffusion equation with a gap
1. | École des hautes études en sciences sociales, PSL Research University, and CNRS, CAMS, 190-198 avenue de France, F-75244 Paris Cedex 13, France |
2. | UNC Chapel Hill, Department of Mathematics, Phillips Hall, CB#3250, Chapel Hill, NC 27599-3250, USA |
Non-local reaction-diffusion equations arise naturally to account for diffusions involving jumps rather than local diffusions related to Brownian motion. In ecology, long distance dispersal require such frameworks. In this work we study a one-dimensional non-local reaction-diffusion equation with bistable type reaction. The heterogeneity here is due to a gap, some finite region where there is decay. Outside this gap region the equation is a classical homogeneous (space independent) non-local reaction-diffusion equation. This type of problem is motivated by applications in ecology, sociology, and physiology. We first establish the existence of a generalized traveling front that approaches a traveling wave solution as t-∞, propagating in a heterogeneous environment. We then study the problem of obstruction of solutions. In particular, we study the propagation properties of the generalized traveling front with significant use of the work of Bates, Fife, Ren and Wang in [
References:
[1] |
G. Alberti and G. Bellettini,
A non-local anisotropic model for phase transitions: Asymptotic behavior of rescaled energies [extended version], European Journal of Applied Mathematics, 9 (1998), 261-284.
doi: 10.1017/S0956792598003453. |
[2] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial differential equations and related topics, Springer, Berlin, Lecture Notes in Math. , 446 (1975), 5-49. |
[3] |
D. G. Aronson and H. F. Weinberger,
Multidimentional non-linear diffusion arising in population genetics, Advances in Mathematics Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[4] |
P. W. Bates and A. Chmaj,
An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, Journal of statistical physics, 95 (1999), 1119-1139.
doi: 10.1023/A:1004514803625. |
[5] |
P. W. Bates, P. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Archive for Rational Mechanics and Analysis, 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[6] |
H. Berestycki and F. Hamel,
Fronts and invasions in general domains, C. R. Math. Acad. Sci. Paris, 343 (2006), 711-716.
doi: 10.1016/j.crma.2006.09.036. |
[7] |
H. Berestycki and F. Hamel,
Generalized travelling waves for reaction-diffusion equations, Contemporary Mathematics, 446 (2007), 101-123.
doi: 10.1090/conm/446/08627. |
[8] |
H. Berestycki, B. Larrouturou and P. L. Lions,
Multi-dimensional travelling-wave solutions of a flame propagation model, Archive for Rational Mechanics and Analysis, 111 (1990), 33-49.
doi: 10.1007/BF00375699. |
[9] |
H. Berestycki, H. Matano and F. Hamel,
Bistable traveling waves around an obstacle, Communications on Pure and Applied Mathematics, 62 (2009), 729-788.
doi: 10.1002/cpa.20275. |
[10] |
H. Berestycki, B. Nicolaenko and B. Scheurer,
Traveling wave solutions to combustion models and their singular limits, SIAM Journal on Mathematical Analysis, 16 (1985), 1207-1242.
doi: 10.1137/0516088. |
[11] |
H. Berestycki and L. Nirenberg,
On the method of moving planes and the sliding method, Boletim da Sociedade Brasileira de Matematica, 22 (1991), 1-37.
doi: 10.1007/BF01244896. |
[12] |
H. Berestycki, N. Rodríguez and L. Ryzhik,
Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Modeling & Simulation, 11 (2013), 1097-1126.
|
[13] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.
doi: 10.3934/dcdss.2011.4.1. |
[14] |
E. Chasseigne, M. Chaves and J. D. Rossi,
Asymptotic behavior for nonlocal diffusion equations, Journal de Mathématiques Pures et Appliquées, 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[15] |
F. Chen,
Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Analysis, Theory, Methods and Applications, 50 (2002), 807-838.
doi: 10.1016/S0362-546X(01)00787-8. |
[16] |
X. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[17] |
C. Cortazar, M. Elgueta and J. D. Rossi,
Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel Journal of Mathematics, 170 (2009), 53-60.
|
[18] |
J. Coville,
Travelling fronts in asymmetric nonlocal reaction diffusion equations: The bistable and ignition cases, Prépublication du CMM, Hal-006962 (2007), 1-43.
|
[19] |
J. Coville, J. Dávila and S. Martínez,
Nonlocal anisotropic dispersal with monostable nonlinearity, Journal of Differential Equations, 244 (2008), 3080-3118.
doi: 10.1016/j.jde.2007.11.002. |
[20] |
J. Coville and L. Dupaigne,
On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A., 137 (2007), 727-755.
|
[21] |
G. B. Ermentrout and J. B. McLeod,
Existence and uniqueness of travelling waves for a neural network, Proceedings of the Royal Society of Edinburgh, 123 (1993), 461-478.
|
[22] |
P. C. Fife,
An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., 177 (1996), 137-145.
doi: 10.3109/14659899609084991. |
[23] |
P. C. Fife and J. B. McLeod,
The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.
|
[24] |
P. C. Fife and X. Wang,
A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions, Adv. Differential Equations, 3 (1998), 85-110.
|
[25] |
R. A. Fisher,
The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369.
|
[26] |
J. Garnier,
Accelerating solutions in integro-differential equations, SIAM J. Appl. Math., 43 (2011), 1955-1974.
doi: 10.1137/10080693X. |
[27] |
V. Hutson and S. Martinez,
The evolution of dispersal, Journal of Math. Bio, 47 (2003), 483-517.
|
[28] |
J. Jacobsen, Y. Jin and M. A. Lewis,
Integrodifference models for persistence in temporally varying river environments, Journal of Mathematical Biology, 70 (2015), 549-590.
doi: 10.1007/s00285-014-0774-y. |
[29] |
Y. Kanel',
Certain problems of burning-theory equations, Soviet Mathematics-Doklady, 2 (1961), 48-51.
|
[30] |
T. Lewis and J. Keener,
Wave-block in excitable media due to regions of depressed excitability, SIAM J. Appl. Math., 61 (2000), 293-316.
doi: 10.1137/S0036139998349298. |
[31] |
T. A. Lim and A. Zlatos,
Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., 368 (2016), 8615-8631.
doi: 10.1090/tran/6602. |
[32] |
H. Matano,
Traveling waves in spatially random media, RIMS Kokyuroku, 1337 (2003), 1-9.
|
[33] |
R. Meaney,
Commuters and Marauders: An examination of the spatial behavior of serial criminals, Journal of Investigative Psychology and Offender Profiling, 1 (2004), 121-137.
doi: 10.1002/jip.12. |
[34] |
B. Perthame and P. E. Souganidis,
Front propagation for a jump process model arising in spatial ecology, Discrete Contin. Dyn. Syst., 13 (2005), 1235-1246.
doi: 10.3934/dcds.2005.13.1235. |
[35] |
J. Riviera,
Traveling wave solutions for a nonlocal reaction-diffusion model of influenza A Drift, DCDS-B, 13 (2010), 157-174.
doi: 10.3934/dcdsb.2010.13.157. |
[36] |
N. Rodríguez,
On an integro-differential model for pest control in a heterogeneous environment, Journal of Mathematical Biology, 70 (2014), 1177-1206.
|
[37] |
K. Schumacher,
Travelling-front solutions for integro-differential equations. Ⅰ, J. Reine Angew. Math., 316 (1980), 54-70.
doi: 10.1515/crll.1980.316.54. |
[38] |
Y.-J. Sun, W.-T. Li and Z.-C. Wang,
Entire solutions in nonlocal dispersal equations with bistable nonlinearity, Journal of Differential Equations, 251 (2011), 551-581.
|
[39] |
H. Yagisita,
Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publications of the Research Institute for Mathematical Sciences, 45 (2009), 925-953.
doi: 10.2977/prims/1260476648. |
[40] |
H. Yagisita,
Existence of traveling wave solutions for a nonlocal bistable equation: An abstract approach, Publ. RIMS, Kyoto Univ., 45 (2009), 955-979.
|
show all references
References:
[1] |
G. Alberti and G. Bellettini,
A non-local anisotropic model for phase transitions: Asymptotic behavior of rescaled energies [extended version], European Journal of Applied Mathematics, 9 (1998), 261-284.
doi: 10.1017/S0956792598003453. |
[2] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial differential equations and related topics, Springer, Berlin, Lecture Notes in Math. , 446 (1975), 5-49. |
[3] |
D. G. Aronson and H. F. Weinberger,
Multidimentional non-linear diffusion arising in population genetics, Advances in Mathematics Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[4] |
P. W. Bates and A. Chmaj,
An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, Journal of statistical physics, 95 (1999), 1119-1139.
doi: 10.1023/A:1004514803625. |
[5] |
P. W. Bates, P. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Archive for Rational Mechanics and Analysis, 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[6] |
H. Berestycki and F. Hamel,
Fronts and invasions in general domains, C. R. Math. Acad. Sci. Paris, 343 (2006), 711-716.
doi: 10.1016/j.crma.2006.09.036. |
[7] |
H. Berestycki and F. Hamel,
Generalized travelling waves for reaction-diffusion equations, Contemporary Mathematics, 446 (2007), 101-123.
doi: 10.1090/conm/446/08627. |
[8] |
H. Berestycki, B. Larrouturou and P. L. Lions,
Multi-dimensional travelling-wave solutions of a flame propagation model, Archive for Rational Mechanics and Analysis, 111 (1990), 33-49.
doi: 10.1007/BF00375699. |
[9] |
H. Berestycki, H. Matano and F. Hamel,
Bistable traveling waves around an obstacle, Communications on Pure and Applied Mathematics, 62 (2009), 729-788.
doi: 10.1002/cpa.20275. |
[10] |
H. Berestycki, B. Nicolaenko and B. Scheurer,
Traveling wave solutions to combustion models and their singular limits, SIAM Journal on Mathematical Analysis, 16 (1985), 1207-1242.
doi: 10.1137/0516088. |
[11] |
H. Berestycki and L. Nirenberg,
On the method of moving planes and the sliding method, Boletim da Sociedade Brasileira de Matematica, 22 (1991), 1-37.
doi: 10.1007/BF01244896. |
[12] |
H. Berestycki, N. Rodríguez and L. Ryzhik,
Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Modeling & Simulation, 11 (2013), 1097-1126.
|
[13] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.
doi: 10.3934/dcdss.2011.4.1. |
[14] |
E. Chasseigne, M. Chaves and J. D. Rossi,
Asymptotic behavior for nonlocal diffusion equations, Journal de Mathématiques Pures et Appliquées, 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[15] |
F. Chen,
Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Analysis, Theory, Methods and Applications, 50 (2002), 807-838.
doi: 10.1016/S0362-546X(01)00787-8. |
[16] |
X. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[17] |
C. Cortazar, M. Elgueta and J. D. Rossi,
Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel Journal of Mathematics, 170 (2009), 53-60.
|
[18] |
J. Coville,
Travelling fronts in asymmetric nonlocal reaction diffusion equations: The bistable and ignition cases, Prépublication du CMM, Hal-006962 (2007), 1-43.
|
[19] |
J. Coville, J. Dávila and S. Martínez,
Nonlocal anisotropic dispersal with monostable nonlinearity, Journal of Differential Equations, 244 (2008), 3080-3118.
doi: 10.1016/j.jde.2007.11.002. |
[20] |
J. Coville and L. Dupaigne,
On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A., 137 (2007), 727-755.
|
[21] |
G. B. Ermentrout and J. B. McLeod,
Existence and uniqueness of travelling waves for a neural network, Proceedings of the Royal Society of Edinburgh, 123 (1993), 461-478.
|
[22] |
P. C. Fife,
An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., 177 (1996), 137-145.
doi: 10.3109/14659899609084991. |
[23] |
P. C. Fife and J. B. McLeod,
The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.
|
[24] |
P. C. Fife and X. Wang,
A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions, Adv. Differential Equations, 3 (1998), 85-110.
|
[25] |
R. A. Fisher,
The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369.
|
[26] |
J. Garnier,
Accelerating solutions in integro-differential equations, SIAM J. Appl. Math., 43 (2011), 1955-1974.
doi: 10.1137/10080693X. |
[27] |
V. Hutson and S. Martinez,
The evolution of dispersal, Journal of Math. Bio, 47 (2003), 483-517.
|
[28] |
J. Jacobsen, Y. Jin and M. A. Lewis,
Integrodifference models for persistence in temporally varying river environments, Journal of Mathematical Biology, 70 (2015), 549-590.
doi: 10.1007/s00285-014-0774-y. |
[29] |
Y. Kanel',
Certain problems of burning-theory equations, Soviet Mathematics-Doklady, 2 (1961), 48-51.
|
[30] |
T. Lewis and J. Keener,
Wave-block in excitable media due to regions of depressed excitability, SIAM J. Appl. Math., 61 (2000), 293-316.
doi: 10.1137/S0036139998349298. |
[31] |
T. A. Lim and A. Zlatos,
Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., 368 (2016), 8615-8631.
doi: 10.1090/tran/6602. |
[32] |
H. Matano,
Traveling waves in spatially random media, RIMS Kokyuroku, 1337 (2003), 1-9.
|
[33] |
R. Meaney,
Commuters and Marauders: An examination of the spatial behavior of serial criminals, Journal of Investigative Psychology and Offender Profiling, 1 (2004), 121-137.
doi: 10.1002/jip.12. |
[34] |
B. Perthame and P. E. Souganidis,
Front propagation for a jump process model arising in spatial ecology, Discrete Contin. Dyn. Syst., 13 (2005), 1235-1246.
doi: 10.3934/dcds.2005.13.1235. |
[35] |
J. Riviera,
Traveling wave solutions for a nonlocal reaction-diffusion model of influenza A Drift, DCDS-B, 13 (2010), 157-174.
doi: 10.3934/dcdsb.2010.13.157. |
[36] |
N. Rodríguez,
On an integro-differential model for pest control in a heterogeneous environment, Journal of Mathematical Biology, 70 (2014), 1177-1206.
|
[37] |
K. Schumacher,
Travelling-front solutions for integro-differential equations. Ⅰ, J. Reine Angew. Math., 316 (1980), 54-70.
doi: 10.1515/crll.1980.316.54. |
[38] |
Y.-J. Sun, W.-T. Li and Z.-C. Wang,
Entire solutions in nonlocal dispersal equations with bistable nonlinearity, Journal of Differential Equations, 251 (2011), 551-581.
|
[39] |
H. Yagisita,
Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publications of the Research Institute for Mathematical Sciences, 45 (2009), 925-953.
doi: 10.2977/prims/1260476648. |
[40] |
H. Yagisita,
Existence of traveling wave solutions for a nonlocal bistable equation: An abstract approach, Publ. RIMS, Kyoto Univ., 45 (2009), 955-979.
|





[1] |
Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021 |
[2] |
Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 |
[3] |
Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147 |
[4] |
Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks and Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002 |
[5] |
Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107 |
[6] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[7] |
Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255 |
[8] |
Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232 |
[9] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[10] |
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 |
[11] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
[12] |
Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347 |
[13] |
Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115 |
[14] |
Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203 |
[15] |
Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079 |
[16] |
Monica Marras, Nicola Pintus, Giuseppe Viglialoro. On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2033-2045. doi: 10.3934/dcdss.2020156 |
[17] |
Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems and Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036 |
[18] |
Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511 |
[19] |
Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037 |
[20] |
Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]