• Previous Article
    On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$
  • DCDS Home
  • This Issue
  • Next Article
    Stability criteria for multiphase partitioning problems with volume constraints
February  2017, 37(2): 685-723. doi: 10.3934/dcds.2017029

A non-local bistable reaction-diffusion equation with a gap

1. 

École des hautes études en sciences sociales, PSL Research University, and CNRS, CAMS, 190-198 avenue de France, F-75244 Paris Cedex 13, France

2. 

UNC Chapel Hill, Department of Mathematics, Phillips Hall, CB#3250, Chapel Hill, NC 27599-3250, USA

Received  August 2015 Revised  November 2016 Published  November 2016

Non-local reaction-diffusion equations arise naturally to account for diffusions involving jumps rather than local diffusions related to Brownian motion. In ecology, long distance dispersal require such frameworks. In this work we study a one-dimensional non-local reaction-diffusion equation with bistable type reaction. The heterogeneity here is due to a gap, some finite region where there is decay. Outside this gap region the equation is a classical homogeneous (space independent) non-local reaction-diffusion equation. This type of problem is motivated by applications in ecology, sociology, and physiology. We first establish the existence of a generalized traveling front that approaches a traveling wave solution as t-∞, propagating in a heterogeneous environment. We then study the problem of obstruction of solutions. In particular, we study the propagation properties of the generalized traveling front with significant use of the work of Bates, Fife, Ren and Wang in [5]. As in the local diffusion case, we prove that obstruction is possible if the gap is sufficiently large. An interesting difference between the local dispersal and the non-local dispersal is that in the latter the obstructing steady states are discontinuous. We characterize these jump discontinuities and discuss the scaling between the range of the dispersal and the critical length of the gap observed numerically. We further explore other differences between the local and the non-local dispersal cases. In this paper, we illustrate these properties by numerical simulations and we state a series of open problems.

Citation: Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029
References:
[1]

G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: Asymptotic behavior of rescaled energies [extended version], European Journal of Applied Mathematics, 9 (1998), 261-284.  doi: 10.1017/S0956792598003453.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial differential equations and related topics, Springer, Berlin, Lecture Notes in Math. , 446 (1975), 5-49. Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimentional non-linear diffusion arising in population genetics, Advances in Mathematics Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, Journal of statistical physics, 95 (1999), 1119-1139.  doi: 10.1023/A:1004514803625.  Google Scholar

[5]

P. W. BatesP. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Archive for Rational Mechanics and Analysis, 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

H. Berestycki and F. Hamel, Fronts and invasions in general domains, C. R. Math. Acad. Sci. Paris, 343 (2006), 711-716.  doi: 10.1016/j.crma.2006.09.036.  Google Scholar

[7]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, Contemporary Mathematics, 446 (2007), 101-123.  doi: 10.1090/conm/446/08627.  Google Scholar

[8]

H. BerestyckiB. Larrouturou and P. L. Lions, Multi-dimensional travelling-wave solutions of a flame propagation model, Archive for Rational Mechanics and Analysis, 111 (1990), 33-49.  doi: 10.1007/BF00375699.  Google Scholar

[9]

H. BerestyckiH. Matano and F. Hamel, Bistable traveling waves around an obstacle, Communications on Pure and Applied Mathematics, 62 (2009), 729-788.  doi: 10.1002/cpa.20275.  Google Scholar

[10]

H. BerestyckiB. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM Journal on Mathematical Analysis, 16 (1985), 1207-1242.  doi: 10.1137/0516088.  Google Scholar

[11]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Boletim da Sociedade Brasileira de Matematica, 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[12]

H. BerestyckiN. Rodríguez and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Modeling & Simulation, 11 (2013), 1097-1126.   Google Scholar

[13]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.  doi: 10.3934/dcdss.2011.4.1.  Google Scholar

[14]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, Journal de Mathématiques Pures et Appliquées, 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[15]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Analysis, Theory, Methods and Applications, 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.  Google Scholar

[16]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[17]

C. CortazarM. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel Journal of Mathematics, 170 (2009), 53-60.   Google Scholar

[18]

J. Coville, Travelling fronts in asymmetric nonlocal reaction diffusion equations: The bistable and ignition cases, Prépublication du CMM, Hal-006962 (2007), 1-43.   Google Scholar

[19]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, Journal of Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[20]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A., 137 (2007), 727-755.   Google Scholar

[21]

G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proceedings of the Royal Society of Edinburgh, 123 (1993), 461-478.   Google Scholar

[22]

P. C. Fife, An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., 177 (1996), 137-145.  doi: 10.3109/14659899609084991.  Google Scholar

[23]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.   Google Scholar

[24]

P. C. Fife and X. Wang, A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions, Adv. Differential Equations, 3 (1998), 85-110.   Google Scholar

[25]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369.   Google Scholar

[26]

J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Appl. Math., 43 (2011), 1955-1974.  doi: 10.1137/10080693X.  Google Scholar

[27]

V. Hutson and S. Martinez, The evolution of dispersal, Journal of Math. Bio, 47 (2003), 483-517.   Google Scholar

[28]

J. JacobsenY. Jin and M. A. Lewis, Integrodifference models for persistence in temporally varying river environments, Journal of Mathematical Biology, 70 (2015), 549-590.  doi: 10.1007/s00285-014-0774-y.  Google Scholar

[29]

Y. Kanel', Certain problems of burning-theory equations, Soviet Mathematics-Doklady, 2 (1961), 48-51.   Google Scholar

[30]

T. Lewis and J. Keener, Wave-block in excitable media due to regions of depressed excitability, SIAM J. Appl. Math., 61 (2000), 293-316.  doi: 10.1137/S0036139998349298.  Google Scholar

[31]

T. A. Lim and A. Zlatos, Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., 368 (2016), 8615-8631.  doi: 10.1090/tran/6602.  Google Scholar

[32]

H. Matano, Traveling waves in spatially random media, RIMS Kokyuroku, 1337 (2003), 1-9.   Google Scholar

[33]

R. Meaney, Commuters and Marauders: An examination of the spatial behavior of serial criminals, Journal of Investigative Psychology and Offender Profiling, 1 (2004), 121-137.  doi: 10.1002/jip.12.  Google Scholar

[34]

B. Perthame and P. E. Souganidis, Front propagation for a jump process model arising in spatial ecology, Discrete Contin. Dyn. Syst., 13 (2005), 1235-1246.  doi: 10.3934/dcds.2005.13.1235.  Google Scholar

[35]

J. Riviera, Traveling wave solutions for a nonlocal reaction-diffusion model of influenza A Drift, DCDS-B, 13 (2010), 157-174.  doi: 10.3934/dcdsb.2010.13.157.  Google Scholar

[36]

N. Rodríguez, On an integro-differential model for pest control in a heterogeneous environment, Journal of Mathematical Biology, 70 (2014), 1177-1206.   Google Scholar

[37]

K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅰ, J. Reine Angew. Math., 316 (1980), 54-70.  doi: 10.1515/crll.1980.316.54.  Google Scholar

[38]

Y.-J. SunW.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, Journal of Differential Equations, 251 (2011), 551-581.   Google Scholar

[39]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publications of the Research Institute for Mathematical Sciences, 45 (2009), 925-953.  doi: 10.2977/prims/1260476648.  Google Scholar

[40]

H. Yagisita, Existence of traveling wave solutions for a nonlocal bistable equation: An abstract approach, Publ. RIMS, Kyoto Univ., 45 (2009), 955-979.   Google Scholar

show all references

References:
[1]

G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: Asymptotic behavior of rescaled energies [extended version], European Journal of Applied Mathematics, 9 (1998), 261-284.  doi: 10.1017/S0956792598003453.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial differential equations and related topics, Springer, Berlin, Lecture Notes in Math. , 446 (1975), 5-49. Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimentional non-linear diffusion arising in population genetics, Advances in Mathematics Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, Journal of statistical physics, 95 (1999), 1119-1139.  doi: 10.1023/A:1004514803625.  Google Scholar

[5]

P. W. BatesP. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Archive for Rational Mechanics and Analysis, 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

H. Berestycki and F. Hamel, Fronts and invasions in general domains, C. R. Math. Acad. Sci. Paris, 343 (2006), 711-716.  doi: 10.1016/j.crma.2006.09.036.  Google Scholar

[7]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, Contemporary Mathematics, 446 (2007), 101-123.  doi: 10.1090/conm/446/08627.  Google Scholar

[8]

H. BerestyckiB. Larrouturou and P. L. Lions, Multi-dimensional travelling-wave solutions of a flame propagation model, Archive for Rational Mechanics and Analysis, 111 (1990), 33-49.  doi: 10.1007/BF00375699.  Google Scholar

[9]

H. BerestyckiH. Matano and F. Hamel, Bistable traveling waves around an obstacle, Communications on Pure and Applied Mathematics, 62 (2009), 729-788.  doi: 10.1002/cpa.20275.  Google Scholar

[10]

H. BerestyckiB. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM Journal on Mathematical Analysis, 16 (1985), 1207-1242.  doi: 10.1137/0516088.  Google Scholar

[11]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Boletim da Sociedade Brasileira de Matematica, 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[12]

H. BerestyckiN. Rodríguez and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Modeling & Simulation, 11 (2013), 1097-1126.   Google Scholar

[13]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.  doi: 10.3934/dcdss.2011.4.1.  Google Scholar

[14]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, Journal de Mathématiques Pures et Appliquées, 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[15]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Analysis, Theory, Methods and Applications, 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.  Google Scholar

[16]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[17]

C. CortazarM. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel Journal of Mathematics, 170 (2009), 53-60.   Google Scholar

[18]

J. Coville, Travelling fronts in asymmetric nonlocal reaction diffusion equations: The bistable and ignition cases, Prépublication du CMM, Hal-006962 (2007), 1-43.   Google Scholar

[19]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, Journal of Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[20]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A., 137 (2007), 727-755.   Google Scholar

[21]

G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proceedings of the Royal Society of Edinburgh, 123 (1993), 461-478.   Google Scholar

[22]

P. C. Fife, An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., 177 (1996), 137-145.  doi: 10.3109/14659899609084991.  Google Scholar

[23]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.   Google Scholar

[24]

P. C. Fife and X. Wang, A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions, Adv. Differential Equations, 3 (1998), 85-110.   Google Scholar

[25]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369.   Google Scholar

[26]

J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Appl. Math., 43 (2011), 1955-1974.  doi: 10.1137/10080693X.  Google Scholar

[27]

V. Hutson and S. Martinez, The evolution of dispersal, Journal of Math. Bio, 47 (2003), 483-517.   Google Scholar

[28]

J. JacobsenY. Jin and M. A. Lewis, Integrodifference models for persistence in temporally varying river environments, Journal of Mathematical Biology, 70 (2015), 549-590.  doi: 10.1007/s00285-014-0774-y.  Google Scholar

[29]

Y. Kanel', Certain problems of burning-theory equations, Soviet Mathematics-Doklady, 2 (1961), 48-51.   Google Scholar

[30]

T. Lewis and J. Keener, Wave-block in excitable media due to regions of depressed excitability, SIAM J. Appl. Math., 61 (2000), 293-316.  doi: 10.1137/S0036139998349298.  Google Scholar

[31]

T. A. Lim and A. Zlatos, Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., 368 (2016), 8615-8631.  doi: 10.1090/tran/6602.  Google Scholar

[32]

H. Matano, Traveling waves in spatially random media, RIMS Kokyuroku, 1337 (2003), 1-9.   Google Scholar

[33]

R. Meaney, Commuters and Marauders: An examination of the spatial behavior of serial criminals, Journal of Investigative Psychology and Offender Profiling, 1 (2004), 121-137.  doi: 10.1002/jip.12.  Google Scholar

[34]

B. Perthame and P. E. Souganidis, Front propagation for a jump process model arising in spatial ecology, Discrete Contin. Dyn. Syst., 13 (2005), 1235-1246.  doi: 10.3934/dcds.2005.13.1235.  Google Scholar

[35]

J. Riviera, Traveling wave solutions for a nonlocal reaction-diffusion model of influenza A Drift, DCDS-B, 13 (2010), 157-174.  doi: 10.3934/dcdsb.2010.13.157.  Google Scholar

[36]

N. Rodríguez, On an integro-differential model for pest control in a heterogeneous environment, Journal of Mathematical Biology, 70 (2014), 1177-1206.   Google Scholar

[37]

K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅰ, J. Reine Angew. Math., 316 (1980), 54-70.  doi: 10.1515/crll.1980.316.54.  Google Scholar

[38]

Y.-J. SunW.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, Journal of Differential Equations, 251 (2011), 551-581.   Google Scholar

[39]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publications of the Research Institute for Mathematical Sciences, 45 (2009), 925-953.  doi: 10.2977/prims/1260476648.  Google Scholar

[40]

H. Yagisita, Existence of traveling wave solutions for a nonlocal bistable equation: An abstract approach, Publ. RIMS, Kyoto Univ., 45 (2009), 955-979.   Google Scholar

Figure 1.  Results from numerical simulations for the gap region problem with probability distribution satisfying $(H1)$ with $\sigma =3$ and $\sigma=5$. Figure (1a) displays a gap region of size 10. In Figure (1b) the length of the gap region is 15. Note that the gap has been shifted for the numerical computations.
Figure 2.  Illustration of the change in the right-most value of the support of the subsolutions. The $x-axis$ provides the center of the support of the subsolutions. Figure 2a illustrates a case when $L=5.$ Here, one only observes the expected discontinuities, when $x=0$ (corresponding to $(i)$ in the figure) and when $x=L$ enter the domain (corresponding to $(ii)$ in the Figure). Figure 2b illustrates the case when $L=12$. On the contrary to the previous case, we see that there is an additional discontinuity (corresponding to $(iii)$)
Figure 3.  Numerical solutions to the Cauchy problem (2.10) with a step function initial condition at time $t=200$. Figure 3a illustrates the case when the gap is too small to prevent propagation (L = 5). Figure 3a illustrates the case when the gap is sufficiently large to obstruct propagation (L = 12).
Figure 4.  Family of subsolutions as the domain is shifted from left to right. Here, $L=12$ and the discontinuity can be seen clearly in sequence of subfigures 8-10.
Figure 5.  Family of subsolutions as the domain is shifted from left to right. Here, L = 12 and the discontinuity can be seen clearly in sequence of subfigures 8-10.
[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[3]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems, 2020  doi: 10.3934/dcds.2020401

[4]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[5]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[6]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[7]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[8]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[9]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[10]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[11]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[12]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[14]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[17]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[18]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[19]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[20]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (172)
  • HTML views (76)
  • Cited by (5)

Other articles
by authors

[Back to Top]