We consider a Dirichlet problem for the Allen-Cahn equation in a smooth, bounded or unbounded, domain $Ω\subset\mathbb{R}^n.$ Under suitable assumptions, we prove an existence result and a uniform exponential estimate for symmetric solutions. In dimension $n=2$ an additional asymptotic result is obtained. These results are based on a pointwise estimate obtained for local minimizers of the Allen-Cahn energy.
Citation: |
[1] |
N. D. Alikakos and G. Fusco, Asymptotic and rigidity results for symmetric solutions of the elliptic system $Δ u=W_u(u)$, Ann Sc. Norm. Sup. Pisa, 15 (2016), 809-836.
![]() ![]() |
[2] |
H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of bistable diffusion equation, Z. Angew. Math. Phys., 43 (1992), 984-998.
doi: 10.1007/BF00916424.![]() ![]() ![]() |
[3] |
M. Efendiev and F. Hamel, Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: Two approaches, Adv. Math., 228 (2011), 1237-1261.
doi: 10.1016/j.aim.2011.06.013.![]() ![]() ![]() |
[4] |
G. Fusco, Equivariant entire solutions to the elliptic system $Δ u=W_u(u)$ for general $G-$invariant potentials, Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985.
doi: 10.1007/s00526-013-0607-7.![]() ![]() ![]() |
[5] |
G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure Appl. Anal., 13 (2014), 1045-1060.
doi: 10.3934/cpaa.2014.13.1045.![]() ![]() ![]() |
[6] |
G. Fusco, F. Leonetti and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations, Transactions AMS, 363 (2011), 4285-4307.
doi: 10.1090/S0002-9947-2011-05356-0.![]() ![]() ![]() |
[7] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
![]() ![]() |
[8] |
P. Smyrnelis,
personal comunication.
![]() |