\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rotationally symmetric solutions to the Cahn-Hilliard equation

  • Author Bio: E-mail address: ahernandez@dim.uchile.cl; E-mail address: kowalczy@dim.uchile.cl
Abstract Full Text(HTML) Related Papers Cited by
  • This paper is devoted to construction of new solutions to the Cahn-Hilliard equation in $\mathbb R^d$. Staring from the Delaunay unduloid $D_τ$ with parameter $τ∈ (0,τ^*)$ we find for each sufficiently small $\varepsilon $ a solution $u$ of this equation which is periodic in the direction of the $x_d$ axis and rotationally symmetric with respect to rotations about this axis. The zero level set of $u$ approaches as $\varepsilon \to 0$ the surface $D_τ$ . We use a refined version of the Lyapunov-Schmidt reduction method which simplifies very technical aspects of previous constructions for similar problems.

    Mathematics Subject Classification: Primary:35J61, 35B08, 35B07, 35B10, 35B36; Secondary: 35Q56, 35Q79.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. D. AlikakosP. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rational Mech. Anal., 128 (1994), 165-205.  doi: 10.1007/BF00375025.
    [2] N. D. AlikakosX. Chen and G. Fusco, Motion of a droplet by surface tension along the boundary, Calc. Var. Partial Differential Equations, 11 (2000), 233-305.  doi: 10.1007/s005260000052.
    [3] N.D. Alikakos and G. Fusco, The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions, Indiana Univ. Math. J., 42 (1993), 637-674.  doi: 10.1512/iumj.1993.42.42028.
    [4] N.D. Alikakos and G. Fusco, Slow dynamics for the Cahn-Hilliard equation in higher space dimensions: The motion of bubbles, Arch. Rational Mech. Anal., 141 (1998), 1-61.  doi: 10.1007/s002050050072.
    [5] N.D. AlikakosG. Fusco and V. Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, J. Differential Equations, 126 (1996), 106-167.  doi: 10.1006/jdeq.1996.0046.
    [6] P.W. Bates and G. Fusco, Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations, 160 (2000), 283-356.  doi: 10.1006/jdeq.1999.3660.
    [7] X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces, Comm. Partial Differential Equations, 19 (1994), 1371-1395.  doi: 10.1080/03605309408821057.
    [8] X. Chen and M. Kowalczyk, Existence of equilibria for the Cahn-Hilliard equation via local minimizers of the perimeter, Comm. Partial Differential Equations, 21 (1996), 1207-1233.  doi: 10.1080/03605309608821223.
    [9] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], SpringerVerlag, New York-Berlin, 1982.
    [10] H. DangP.C. Fife and L.A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys., 43 (1992), 984-998.  doi: 10.1007/BF00916424.
    [11] M. del PinoM. KowalczykF. Pacard and J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224 (2010), 1462-1516.  doi: 10.1016/j.aim.2010.01.003.
    [12] M. del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension N ≥ 9, Ann. of Math. (2), 174 (2011), 1485-1569.  doi: 10.4007/annals.2011.174.3.3.
    [13] M. del PinoM. Kowalczyk and J. Wei, Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature in ${{\mathbb{R}}^{3}}$, Journ. Diff. Geometry, 93 (2013), 67-131. 
    [14] M. del PinoM. Kowalczyk and J. Wei, Traveling waves with multiple and non-convex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547.  doi: 10.1002/cpa.21438.
    [15] M. del PinoF. Pacard and M. Musso, Solutions of the Allen-Cahn equation which are invariant under screw-motion, Manuscripta Math., 138 (2012), 273-286.  doi: 10.1007/s00229-011-0492-3.
    [16] C. Delaunay, Sur la surface de revolution dont la courbure moyenna est constante, J. Math. Pures Appl., 6 (1841), 309-320. 
    [17] J. Eells, The surfaces of Delaunay, Math. Intelligencer, 9 (1987), 53-57.  doi: 10.1007/BF03023575.
    [18] P. C. Fife, Models for phase separation and their mathematics, Electron. J. Differential Equations, 2000, pages No. 48, 26 pp. (electronic).
    [19] P.C. Fife, Pattern formation in gradient systems, In Handbook of dynamical systems, NorthHolland, Amsterdam, 2 (2002), 677-722.  doi: 10.1016/S1874-575X(02)80034-0.
    [20] Á. Hernández and M. Kowalczyk, Delaunay end solutions of the cahn-hilliard equation in, in ´ preparation.
    [21] W.-y. Hsiang and W.C. Yu, A generalization of a theorem of Delaunay, J. Differential Geom., 16 (1981), 161-177. 
    [22] J.E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der {W}aals-Cahn-Hilliard theory, Calc. Var. Partial Differential Equations, 10 (2000), 49-84.  doi: 10.1007/PL00013453.
    [23] M. Jleli, End-to-end gluing of constant mean curvature hypersurfaces, Ann. Fac. Sci. Toulouse Math. (6), 18 (2009), 717-737.  doi: 10.5802/afst.1222.
    [24] M. Jleli and F. Pacard, An end-to-end construction for compact constant mean curvature surfaces, Pacific J. Math., 221 (2005), 81-108.  doi: 10.2140/pjm.2005.221.81.
    [25] R.V. Kohn and P. Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69-84.  doi: 10.1017/S0308210500025026.
    [26] R. Mazzeo and F. Pacard, Bifurcating nodoids, In Topology and geometry: Commemorating SISTAG, volume 314 of Contemp. Math. , pages 169-186. Amer. Math. Soc. , Providence, RI, 2002.
    [27] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.  doi: 10.1007/BF00251230.
    [28] F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differential Geom., 64 (2003), 359-423. 
    [29] F. Pacard and J. Wei, Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones, J. Funct. Anal., 264 (2013), 1131-1167.  doi: 10.1016/j.jfa.2012.03.010.
    [30] L.A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\textbf{R}^{n}$, Arch. Rational Mech. Anal., 81 (1983), 181-197.  doi: 10.1007/BF00250651.
    [31] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260.  doi: 10.1007/BF00253122.
    [32] J. Wei and M. Winter, On the stationary Cahn-Hilliard equation: Bubble solutions, SIAM J. Math. Anal., 29 (1998), 1492-1518 (electronic).  doi: 10.1137/S0036141097320663.
    [33] J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459-492.  doi: 10.1016/S0294-1449(98)80031-0.
  • 加载中
SHARE

Article Metrics

HTML views(142) PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return