February  2017, 37(2): 859-878. doi: 10.3934/dcds.2017035

A dynamical approach to phytoplankton blooms

1. 

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA

2. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

Received  August 2015 Revised  April 2016 Published  November 2016

Fund Project: Both authors supported by the National Science Foundation under grant DMS-0940363.

Algae in the ocean absorb carbon dioxide from the atmosphere and thus play an important role in the carbon cycle. An algal bloom occurs when there is a rapid increase in an algae population. We consider a reaction-advection-diffusion model for algal bloom density and present new proofs of existence and uniqueness results for the steady state solutions using techniques from dynamical systems. On the question of stability of the bloom profiles, we show that the only possible bifurcation would be due to an oscillatory instability.

Citation: Christopher K.R.T. Jones, Bevin Maultsby. A dynamical approach to phytoplankton blooms. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 859-878. doi: 10.3934/dcds.2017035
References:
[1]

M. J. Behrenfeld, Climate-driven trends in contemporary ocean productivity, Nature, 444 (2006), 752-755.  doi: 10.1038/nature05317.  Google Scholar

[2] D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1966.   Google Scholar
[3]

J. E. Cloern, Tidal stirring and phytoplankton bloom dynamics in an estuary, J. Mar. Res., 49 (1991), 203-221.  doi: 10.1357/002224091784968611.  Google Scholar

[4]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.  doi: 10.1088/0951-7715/24/1/016.  Google Scholar

[5]

Y. Du and S. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.  Google Scholar

[6]

U. EbertM. ArrayásN. Temme and B. Sommeijer, Critical conditions for phytoplankton blooms, Bulletin of Mathematical Biology, 63 (2001), 1095-1124.  doi: 10.1006/bulm.2001.0261.  Google Scholar

[7]

J. Huisman, Population dynamics of light-limited phytoplankton: Microcosm experiments, Ecology, 80 (1999), 202-210.   Google Scholar

[8]

J. HuismanM. ArrayásU. Ebert and B. Sommeijer, How do sinking phytoplankton species manage to persist?, The American Naturalist, 159 (2002), 245-254.  doi: 10.1086/338511.  Google Scholar

[9]

J. HuismanP. van Oostveen and F. J. Weissing, Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms, Limnology and Oceanography, 44 (1999), 1781-1787.  doi: 10.4319/lo.1999.44.7.1781.  Google Scholar

[10]

S. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.  Google Scholar

[11]

H. Ishii and I. Takagi, Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics, Journal of Mathematical Biology, 16 (1982), 1-24.  doi: 10.1007/BF00275157.  Google Scholar

[12]

H. Kaper and H. Engler, Mathematics and Climate, Society for Industrial & Applied Mathematics, US, 2013. Google Scholar

[13]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnology and Oceanography, 46 (2001), 1998-2007.  doi: 10.4319/lo.2001.46.8.1998.  Google Scholar

[14]

T. KolonikovC. H. Ou and Y. Yuan, Phytoplankton depth profiles and their transitions near the critical sinking velocity, J. Math. Biol., 59 (2009), 105-122.  doi: 10.1007/s00285-008-0221-z.  Google Scholar

[15]

L. Mei and X. Zhang, Existence and nonexistence of positive steady states in multi-species phytoplankton dynamics, J. Differential Equations, 253 (2012), 2025-2063.  doi: 10.1016/j.jde.2012.06.011.  Google Scholar

[16]

T. PlattC. L. Gallegos and W. G. Harrison, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res, 38 (2011), 687-701.   Google Scholar

[17]

G. A. RileyH. Stommel and D. F. Bumpus, Quantitative ecology of the plankton of the western North Atlantic, Bull. Bingham Oceanogr. Collection, 12 (1949), article 3.   Google Scholar

[18]

N. Shigesada and A. Okubo, Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol., 12 (1981), 311-326.  doi: 10.1007/BF00276919.  Google Scholar

[19]

W. L. WebbM. Newton and D. Starr, Carbon dioxide exchange of Alnus rubra: A mathematical model, Oecologia, 17 (1974), 281-291.  doi: 10.1007/BF00345747.  Google Scholar

[20]

A. ZagarisA. DoelmanN. N. Pham Thi and B. P. Sommeijer, Blooming in a nonlocal, coupled phytoplankton-nutrient model, SIAM J. Appl. Math., 69 (2009), 1174-1204.  doi: 10.1137/070693692.  Google Scholar

show all references

References:
[1]

M. J. Behrenfeld, Climate-driven trends in contemporary ocean productivity, Nature, 444 (2006), 752-755.  doi: 10.1038/nature05317.  Google Scholar

[2] D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1966.   Google Scholar
[3]

J. E. Cloern, Tidal stirring and phytoplankton bloom dynamics in an estuary, J. Mar. Res., 49 (1991), 203-221.  doi: 10.1357/002224091784968611.  Google Scholar

[4]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.  doi: 10.1088/0951-7715/24/1/016.  Google Scholar

[5]

Y. Du and S. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.  Google Scholar

[6]

U. EbertM. ArrayásN. Temme and B. Sommeijer, Critical conditions for phytoplankton blooms, Bulletin of Mathematical Biology, 63 (2001), 1095-1124.  doi: 10.1006/bulm.2001.0261.  Google Scholar

[7]

J. Huisman, Population dynamics of light-limited phytoplankton: Microcosm experiments, Ecology, 80 (1999), 202-210.   Google Scholar

[8]

J. HuismanM. ArrayásU. Ebert and B. Sommeijer, How do sinking phytoplankton species manage to persist?, The American Naturalist, 159 (2002), 245-254.  doi: 10.1086/338511.  Google Scholar

[9]

J. HuismanP. van Oostveen and F. J. Weissing, Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms, Limnology and Oceanography, 44 (1999), 1781-1787.  doi: 10.4319/lo.1999.44.7.1781.  Google Scholar

[10]

S. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.  Google Scholar

[11]

H. Ishii and I. Takagi, Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics, Journal of Mathematical Biology, 16 (1982), 1-24.  doi: 10.1007/BF00275157.  Google Scholar

[12]

H. Kaper and H. Engler, Mathematics and Climate, Society for Industrial & Applied Mathematics, US, 2013. Google Scholar

[13]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnology and Oceanography, 46 (2001), 1998-2007.  doi: 10.4319/lo.2001.46.8.1998.  Google Scholar

[14]

T. KolonikovC. H. Ou and Y. Yuan, Phytoplankton depth profiles and their transitions near the critical sinking velocity, J. Math. Biol., 59 (2009), 105-122.  doi: 10.1007/s00285-008-0221-z.  Google Scholar

[15]

L. Mei and X. Zhang, Existence and nonexistence of positive steady states in multi-species phytoplankton dynamics, J. Differential Equations, 253 (2012), 2025-2063.  doi: 10.1016/j.jde.2012.06.011.  Google Scholar

[16]

T. PlattC. L. Gallegos and W. G. Harrison, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res, 38 (2011), 687-701.   Google Scholar

[17]

G. A. RileyH. Stommel and D. F. Bumpus, Quantitative ecology of the plankton of the western North Atlantic, Bull. Bingham Oceanogr. Collection, 12 (1949), article 3.   Google Scholar

[18]

N. Shigesada and A. Okubo, Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol., 12 (1981), 311-326.  doi: 10.1007/BF00276919.  Google Scholar

[19]

W. L. WebbM. Newton and D. Starr, Carbon dioxide exchange of Alnus rubra: A mathematical model, Oecologia, 17 (1974), 281-291.  doi: 10.1007/BF00345747.  Google Scholar

[20]

A. ZagarisA. DoelmanN. N. Pham Thi and B. P. Sommeijer, Blooming in a nonlocal, coupled phytoplankton-nutrient model, SIAM J. Appl. Math., 69 (2009), 1174-1204.  doi: 10.1137/070693692.  Google Scholar

Figure 1.  The plane pictured above is $\{q=CP\}$, and the curve is $\gamma(L)$ defined by (28). This figure illustrates the existence and uniqueness of an initial condition $\alpha$ so that the solution $P(L;\alpha)$ satisfies the boundary condition $P'=CP$ at $z=0$ and $z=L$. For all $a\in (0, \alpha)$, we have $P' < CP$ when $z=L$, while for all $a>\alpha$, $P'>CP$. Parameter values are $A=10$, $B=0.5$, $C=1$ and $L=0.1$
Figure 2.  The phase portrait in the invariant plane $\{r=0\}$ of the linearized system (44). The dashed line is $\delta q = C\delta P$; the solid lines are the straight-line solutions determined by the eigenvectors $\lambda_+$ and $\lambda_-$. As shown in Lemma 3.4, in a small neighborhood of the origin, $(\delta P, \delta q)$ either tends to the origin on the stable manifold, or tends to the straight-line solution $\delta q = \lambda_+ \delta P$
Figure 3.  The top row is the projection of $\gamma(L)$ onto the $(P, q)$-plane for the same parameters $(A, B, C)=(10, 0.5, 1)$ at different depths $L$: $L=0.1$ (left), $L=0.3$ (center), and $L=3$ (right). As $L$ increases, the solid red curve $\gamma(L)$ passes above the lower dashed line $q=CP$ and tends toward the upper dashed line $q=\lambda_+ P$, as predicted by Lemma 3.4. The bottom row shows the corresponding pictures in $(P, q, r)$-space: the curve is $\gamma(L)$ for each $L$, and the plane is $\{q=CP\}$. In the first and second plot, $L < L^*$, so there is a nontrivial steady state solution to (1)-(3). In the third picture, $L>L^*$; consequently $\gamma(L)$ lies over the plane and there is no nontrivial solution
Figure 4.  The projection of $\gamma(L)$ onto the $(P, q)$-plane for the same parameters $(A, B, L)=(10, 0.5, 0.5)$ at two different values of the advection coefficient $C$: $C=0.5$ (left) and $C=-0.5$ (right). In each plot, the nontrivial intersection of the solution curve $\gamma(L)$ (solid) with the plane $\{q=CP\}$ (dashed) corresponds to a solution $P(z;a_0)$ to (4)-(6) and occurs so that $\zeta_{a_0}(L)>0$, satisfying Corollary 3. Parameter values are $(A, B, L)=(10, 0.5, 0.5)$ with $F(r)=r$
Figure 5.  Projections of the plane $\{q=CP\}$ and the curve $\gamma(z)$ onto $(p, q)$-space for (a) $z=L$ and (b) $z=z_1$, for $z_1 < L$ chosen in the proof of Lemma 4.3. Each point $P_a$ corresponds to the solution $(P(z;a), q(z;a), r(z;a))$ at the appropriate choice of $z$. (a) A configuration of $\gamma(L)$ with two solutions to (4)-(6), $P(z;A_1)$ and $P(z;A_2)$, both satisfying Corollary 3. By the same lemma, $P(z;\alpha_0)$ is not a solution to (4)-(6) as $P(z;\alpha_0)$ cannot be a nonnegative function on $[0, L]$. (b) As $P(z;A_1)$ and $P(z;A_2)$ must remain in the right-hand plane for all $z < L$, the assumed existence of $P(z;\alpha_0)$ in (a) gives rise to a subset of $\gamma(z_1)$ entirely contained in the left-hand plane. This configuration contradicts Lemma 4.2; as a result, any positive solution to (4)-(6) is unique
[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[6]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[7]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[8]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[9]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[10]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[11]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[12]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[13]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[14]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[15]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[16]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[17]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (85)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]