February  2017, 37(2): 879-903. doi: 10.3934/dcds.2017036

On eigenvalue problems arising from nonlocal diffusion models

1. 

Center for PDE, East China Normal University, 500 Dongchuan Road, Minhang 200241, Shanghai, China

2. 

Biostatistique et Processus Spatiaux, INRA, 84000, Avignon, France

3. 

Department of Mathematics, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan 518055, Shenzhen, China

FL is supported by NSF of China (No. 11431005), NSF of Shanghai (No. 16ZR1409600).JC is supported by the French ANR through the ANR JCJC project MODEVOL: ANR-13-JS01-0009 and the ANR project NONLOCAL: ANR-13-JS01-0009.XFW is supported by NSF of China (No. 11671190).

Received  June 2015 Revised  September 2015 Published  November 2016

We aim at saying as much as possible about the spectra of three classes of linear diffusion operators involving nonlocal terms. In all but one cases, we characterize the minimum $λ_p$ of the real part of the spectrum in two max-min fashions, and prove that in most cases $λ_p$ is an eigenvalue with a corresponding positive eigenfunction, and is algebraically simple and isolated; we also prove that the maximum principle holds if and only if $λ_p>0$ (in most cases) or $≥ 0$ (in one case). We prove these results by an elementary method based on the strong maximum principle, rather than resorting to Krein-Rutman theory as did in the previous papers. In one case when it is impossible to characterize $λ_p$ in the max-min fashion, we supply a complete description of the whole spectrum.

Citation: Fang Li, Jerome Coville, Xuefeng Wang. On eigenvalue problems arising from nonlocal diffusion models. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 879-903. doi: 10.3934/dcds.2017036
References:
[1]

X. Bai and F. Li, Optimization of species survival for logistic models with non-local dispersal, Nonlinear Anal. Real World Appl., 21 (2015), 53-62.  doi: 10.1016/j.nonrwa.2014.06.006.  Google Scholar

[2]

X. Bai and F. Li, Global dynamics of a competition model with nonlocal dispersal Ⅱ: The full system, J. Differential Equations, 258 (2015), 2655-2685.  doi: 10.1016/j.jde.2014.12.014.  Google Scholar

[3]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

P. Bates and G. Zhao, Spectral convergence and turing patterns for nonlocal diffusion systems, preprints. Google Scholar

[5]

H. BerestyckiJ. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[6]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[7]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[8]

J. Coville, Singular measure as principal eigenfunction of some nonlocal operators, Appl. Math. Lett., 26 (2013), 831-835.  doi: 10.1016/j.aml.2013.03.005.  Google Scholar

[9]

J. Coville, Nonlocal refuge model with a partial control, Discrete Contin. Dyn. Syst., 35 (2015), 1421-1446.  doi: 10.3934/dcds.2015.35.1421.  Google Scholar

[10]

J. CovilleJ. Davila and S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. I. H. Poincare -AN, 30 (2013), 179-223.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[11]

J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, Burgess Pub. Co. , 1970. Google Scholar

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, Providence, 1998. Google Scholar

[13]

V. HustonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[14] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.   Google Scholar
[15]

F. LiK. Nakashima and W.-M. Ni, Stability from the point of view of diffusion, relaxation and spatial inhomogeneity, Discrete Contin. Dyn. Syst., 20 (2008), 259-274.   Google Scholar

[16]

F. LiY. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal Ⅰ: the shadow system, J. Math. Anal. Appl., 412 (2014), 485-497.  doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[17]

H. G. OthmerS. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.  doi: 10.1007/BF00277392.  Google Scholar

[18]

W. Shen and X. Xie, On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications, Discrete Contin. Dyn. Syst., 35 (2015), 1665-1696.  doi: 10.3934/dcds.2015.35.1665.  Google Scholar

[19]

D. B. Smith, A sufficient condition for the existence of a principal eigenvalue for nonlocal diffusion equations with applications, J. Math. Anal. Appl., 418 (2014), 766-774.  doi: 10.1016/j.jmaa.2014.04.004.  Google Scholar

[20]

L. SunJ. Shi and Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013), 1267-1278.  doi: 10.1007/s00033-012-0286-9.  Google Scholar

[21]

J.-W. SunW.-T. Li and Z.-C. Wang, A nonlocal dispersal logistic equation with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.  doi: 10.3934/dcds.2015.35.3217.  Google Scholar

[22]

J.-W. SunF.-Y. Yang and W.-T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.  doi: 10.1016/j.jde.2014.05.005.  Google Scholar

[23]

Y. Yamada, On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal., 118 (2015), 51-62.  doi: 10.1016/j.na.2015.01.016.  Google Scholar

show all references

References:
[1]

X. Bai and F. Li, Optimization of species survival for logistic models with non-local dispersal, Nonlinear Anal. Real World Appl., 21 (2015), 53-62.  doi: 10.1016/j.nonrwa.2014.06.006.  Google Scholar

[2]

X. Bai and F. Li, Global dynamics of a competition model with nonlocal dispersal Ⅱ: The full system, J. Differential Equations, 258 (2015), 2655-2685.  doi: 10.1016/j.jde.2014.12.014.  Google Scholar

[3]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

P. Bates and G. Zhao, Spectral convergence and turing patterns for nonlocal diffusion systems, preprints. Google Scholar

[5]

H. BerestyckiJ. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[6]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[7]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[8]

J. Coville, Singular measure as principal eigenfunction of some nonlocal operators, Appl. Math. Lett., 26 (2013), 831-835.  doi: 10.1016/j.aml.2013.03.005.  Google Scholar

[9]

J. Coville, Nonlocal refuge model with a partial control, Discrete Contin. Dyn. Syst., 35 (2015), 1421-1446.  doi: 10.3934/dcds.2015.35.1421.  Google Scholar

[10]

J. CovilleJ. Davila and S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. I. H. Poincare -AN, 30 (2013), 179-223.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[11]

J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, Burgess Pub. Co. , 1970. Google Scholar

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, Providence, 1998. Google Scholar

[13]

V. HustonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[14] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.   Google Scholar
[15]

F. LiK. Nakashima and W.-M. Ni, Stability from the point of view of diffusion, relaxation and spatial inhomogeneity, Discrete Contin. Dyn. Syst., 20 (2008), 259-274.   Google Scholar

[16]

F. LiY. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal Ⅰ: the shadow system, J. Math. Anal. Appl., 412 (2014), 485-497.  doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[17]

H. G. OthmerS. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.  doi: 10.1007/BF00277392.  Google Scholar

[18]

W. Shen and X. Xie, On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications, Discrete Contin. Dyn. Syst., 35 (2015), 1665-1696.  doi: 10.3934/dcds.2015.35.1665.  Google Scholar

[19]

D. B. Smith, A sufficient condition for the existence of a principal eigenvalue for nonlocal diffusion equations with applications, J. Math. Anal. Appl., 418 (2014), 766-774.  doi: 10.1016/j.jmaa.2014.04.004.  Google Scholar

[20]

L. SunJ. Shi and Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013), 1267-1278.  doi: 10.1007/s00033-012-0286-9.  Google Scholar

[21]

J.-W. SunW.-T. Li and Z.-C. Wang, A nonlocal dispersal logistic equation with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.  doi: 10.3934/dcds.2015.35.3217.  Google Scholar

[22]

J.-W. SunF.-Y. Yang and W.-T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.  doi: 10.1016/j.jde.2014.05.005.  Google Scholar

[23]

Y. Yamada, On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal., 118 (2015), 51-62.  doi: 10.1016/j.na.2015.01.016.  Google Scholar

[1]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[2]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[3]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[6]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[7]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[8]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[9]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[10]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[11]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[12]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[13]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[14]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[15]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (290)
  • HTML views (100)
  • Cited by (11)

Other articles
by authors

[Back to Top]