February  2017, 37(2): 1061-1073. doi: 10.3934/dcds.2017044

A dynamic theory for contact angle hysteresis on chemically rough boundary

1. 

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

2. 

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, NCMIS, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Xiao-Ping Wang

Received  August 2015 Revised  April 2016 Published  November 2016

Fund Project: This publication was supported in part by the Hong Kong RGC-GRF grants 605513 and 605311, Hong Kong RGC-CRF grant C6004-14G and NSFC grant 11571354.

We study the interface dynamics and contact angle hysteresis in a two dimensional, chemically patterned channel described by the Cahn-Hilliard equation with a relaxation boundary condition. A system for the dynamics of the contact angle and contact point is derived in the sharp interface limit. We then analyze the behavior of the solution using the phase plane analysis. We observe the stick-slip of the contact point and the contact angle hysteresis. As the size of the pattern decreases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle without any switching in between. Numerical examples are presented to verify our analysis.

Citation: Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044
References:
[1]

X. ChenX.-P. Wang and X. Xu, Analysis of the cahn-hilliard equation with a relaxation boundary condition modeling the contact angle dynamics, Arch. Rational Mech. Anal., 213 (2014), 1-24.  doi: 10.1007/s00205-013-0713-x.  Google Scholar

[2]

P. de Gennes, Wetting: Statics and dynamics, Simple Views on Condensed Matter, 12 (2003), 357-394.  doi: 10.1142/9789812564849_0041.  Google Scholar

[3]

A. DeSimoneN. Gruenewald and F. Otto, A new model for contact angle hysteresis, Networks and Heterogeneous Media, 2 (2007), 211-225.  doi: 10.3934/nhm.2007.2.211.  Google Scholar

[4]

R. Pego, Front migration in the nonlinear cahn-hilliard equation, Proc. R. Soc. Lond., A, 422 (1989), 261-278.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[5]

T. QianX. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.  doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[6]

T. QianX. Wang and P. Sheng, Power-law slip profile of the moving contact line in two-phase immiscible flows, Phys. Rev. Lett., 93 (2004), 094501.  doi: 10.1103/PhysRevLett.93.094501.  Google Scholar

[7]

A. Turco, F. Alouges and A. DeSimone, Wetting on rough surfaces and contact angle hysteresis: Numerical experiments based on a phase field model, ESAIM: Mathematical Modelling and Numerical Analysis, 43 (2009), 1027-1044, http://www.esaim-m2an.org/article_S0764583X09000168. Google Scholar

[8]

X. WangT. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, Journal of Fluid Mechanics, 605 (2008), 59-78.  doi: 10.1017/S0022112008001456.  Google Scholar

[9]

X. Xu and X. P. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593.  Google Scholar

[10]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.   Google Scholar

show all references

References:
[1]

X. ChenX.-P. Wang and X. Xu, Analysis of the cahn-hilliard equation with a relaxation boundary condition modeling the contact angle dynamics, Arch. Rational Mech. Anal., 213 (2014), 1-24.  doi: 10.1007/s00205-013-0713-x.  Google Scholar

[2]

P. de Gennes, Wetting: Statics and dynamics, Simple Views on Condensed Matter, 12 (2003), 357-394.  doi: 10.1142/9789812564849_0041.  Google Scholar

[3]

A. DeSimoneN. Gruenewald and F. Otto, A new model for contact angle hysteresis, Networks and Heterogeneous Media, 2 (2007), 211-225.  doi: 10.3934/nhm.2007.2.211.  Google Scholar

[4]

R. Pego, Front migration in the nonlinear cahn-hilliard equation, Proc. R. Soc. Lond., A, 422 (1989), 261-278.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[5]

T. QianX. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.  doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[6]

T. QianX. Wang and P. Sheng, Power-law slip profile of the moving contact line in two-phase immiscible flows, Phys. Rev. Lett., 93 (2004), 094501.  doi: 10.1103/PhysRevLett.93.094501.  Google Scholar

[7]

A. Turco, F. Alouges and A. DeSimone, Wetting on rough surfaces and contact angle hysteresis: Numerical experiments based on a phase field model, ESAIM: Mathematical Modelling and Numerical Analysis, 43 (2009), 1027-1044, http://www.esaim-m2an.org/article_S0764583X09000168. Google Scholar

[8]

X. WangT. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, Journal of Fluid Mechanics, 605 (2008), 59-78.  doi: 10.1017/S0022112008001456.  Google Scholar

[9]

X. Xu and X. P. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593.  Google Scholar

[10]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.   Google Scholar

Figure 1.  Contact angle formed by the liquid-air interface with the solid boundary
Figure 2.  Interface motion in a channel
Figure 3.  The phase plane for the homogeneous boundary
Figure 4.  The phase plane and the attracting region bounded by the nullclines.
Figure 5.  The advancing contact angle trajectory for large (left) and small (right) pattern period $T$.
Figure 6.  Advancing and receding contact angles for large ($T=2\pi/5$) and small ($T=2\pi/40$) pattern period. For large $T$, we observe stick-slip of the contact point (see Fig. 7). For small $T$, we observe contact angle hysteresis.
Figure 7.  The contact point stick-slip behaviour for pattern surface with period $T=2\pi/5$. Top: advancing trajectory of contact angle $\theta$. Middle: contact point velocity $x_t$. Below: $x_t$ in log scale
Figure 8.  Advancing and receding contact angles for inhomogeneous surfaces with smooth $\theta_Y$ with large and small patterned period.
[1]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[2]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[3]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[4]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[5]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[8]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[9]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[10]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[11]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[15]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[16]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[18]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[19]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[20]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (87)
  • HTML views (66)
  • Cited by (3)

Other articles
by authors

[Back to Top]