In this article the discrete Conley index theory is used to study diffeomorphisms on closed differentiable n-manifolds with zero dimensional hyperbolic chain recurrent set. A theorem is established for the computation of the discrete Conley index of these basic sets in terms of the dynamical information contained in their associated structure matrices. Also, a classification of the reduced homology Conley index of these basic sets is presented using its Jordan real form. This, in turn, is essential to obtain a characterization of a pair of connection matrices for a Morse decomposition of zero-dimensional basic sets of a diffeomorphism.
Citation: |
[1] |
P. Bartiomiejczyk and Z. Dzedzej, Connection Matrix theory for discrete dynamical systems, Banach Center Publications, 47 (1999), 67-78.
![]() ![]() |
[2] |
P. Blanchard and J. Franks, An obstruction to the existence of certain dynamics in surface diffeomorphisms, Ergodic Theory & Dynamical Systems, 1 (1981), 255-260.
![]() ![]() |
[3] |
R. Bowen, Topological entropy and Axiom A, Proc. Sympos. Pure Math., 14 (1970), 23-41.
![]() ![]() |
[4] |
R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Annals of Mathematics, 106 (1977), 73-92.
doi: 10.2307/1971159.![]() ![]() ![]() |
[5] |
C. Conley,
Isolated Invariant Sets and Morse Index CBMS Regional Conference Series in Mathematics, n. 38, American Mathematical Society, Providence, R. I. , 1978.
![]() ![]() |
[6] |
J. M. Franks,
Homology and Dynamical Systems, CBMS Regional Conference Series in Mathematics, n. 49, American Mathematical Society, Providence, R. I. , 1982.
![]() ![]() |
[7] |
J. M. Franks and D. S. Richeson, Shift equivalence and the Conley Index, Transactions of the American Mathematical Society, 352 (2000), 3305-3322.
doi: 10.1090/S0002-9947-00-02488-0.![]() ![]() ![]() |
[8] |
R. D. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Transactions of the American Mathematical Society, 298 (1986), 193-213.
doi: 10.1090/S0002-9947-1986-0857439-7.![]() ![]() ![]() |
[9] |
R. D. Franzosa, The continuation theory for Morse decompositions and connection matrices, Transactions of the American Mathematical Society, 310 (1988), 781-803.
doi: 10.1090/S0002-9947-1988-0973177-6.![]() ![]() ![]() |
[10] |
R. D. Franzosa, The connection matrix theory for Morse decompositions, Transactions of the American Mathematical Society, 311 (1989), 561-592.
doi: 10.1090/S0002-9947-1989-0978368-7.![]() ![]() ![]() |
[11] |
M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Transactions of the American Mathematical Society, 318 (1990), 149-178.
doi: 10.1090/S0002-9947-1990-0968888-1.![]() ![]() ![]() |
[12] |
J. F. Reineck, The connection matrix in Morse-Smale flows, Transactions of the American Mathematical Society, 322 (1990), 523-545.
doi: 10.1090/S0002-9947-1990-0972705-3.![]() ![]() ![]() |
[13] |
C. McCord and J. F. Reineck, Connection matrices and transition matrices, Banach Center Publications, 47 (1999), 41-55.
![]() ![]() |
[14] |
D. S. Richeson,
Connection Matrix Pairs for the Discrete Conley Index Ph. D thesis, Northwesten University, 1998.
![]() ![]() |
[15] |
D. S. Richeson, Connection matrix pairs, Banach Center Publications, 47 (1999), 219-232.
![]() ![]() |
[16] |
J. W. Robbin and D. Salamon, Dynamical systems, shape theory and Conley index, Ergodic Theory & Dynamical Systems, 8* (1988), 375{393.
doi: 10.1017/S0143385700009494.![]() ![]() ![]() |
[17] |
D. Salamon, Connected simple systems and Conley index of isolated invariant sets, Transactions of the American Mathematical Society, 291 (1985), 1-41.
doi: 10.1090/S0002-9947-1985-0797044-3.![]() ![]() ![]() |
[18] |
D. Salamon, Morse Theory, Conley index and Floer homology, Bull. London Math. Soc., 22 (1990), 113-140.
doi: 10.1112/blms/22.2.113.![]() ![]() ![]() |
[19] |
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 797-817.
doi: 10.1090/S0002-9904-1967-11798-1.![]() ![]() ![]() |
[20] |
M. Shub and D. Sullivan, Homology and dynamical systems, Topology, 14 (1975), 109-132.
doi: 10.1016/0040-9383(75)90022-1.![]() ![]() ![]() |
[21] |
A. Szymczak, The Conley index for discrete semidynamical systems, Topology and its Applications, 66 (1995), 215-240.
doi: 10.1016/0166-8641(95)0003J-S.![]() ![]() ![]() |