• Previous Article
    Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation
  • DCDS Home
  • This Issue
  • Next Article
    Effect of cross-diffusion in the diffusion prey-predator model with a protection zone
March  2017, 37(3): 1509-1537. doi: 10.3934/dcds.2017062

On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators

1. 

Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

2. 

Faculty of Information Technology, Macau University of Science and Technology, Macau, China

1Corresponding author

Received  June 2016 Revised  September 2016 Published  December 2016

Fund Project: This work was partially supported by NNSFC (No.11671407 and No.11271382), FDCT (No. 098/2013/A3), Guangdong Special Support Program (No. 8-2015), and the key project of NSF of Guangdong province (No. 2016A030311004)

In this paper, we mainly consider the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators: $m=(1-\partial_x^2)^su, s>1$. By Littlewood-Paley theory and transport equation theory, we first establish the local well-posedness of the generalized b-equation with fractional higher-order inertia operators which is the subsystem of the generalized two-component water wave system. Then we prove the local well-posedness of the generalized two-component water wave system with fractional higher-order inertia operators. Next, we present the blow-up criteria for these systems. Moreover, we obtain some global existence results for these systems.

Citation: Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062
References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations Springer-Verlag Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. Camassa and D. D. Holm, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0. Google Scholar

[6]

M. ChenS.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15. doi: 10.1007/s11005-005-0041-7. Google Scholar

[7]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. doi: 10.1016/j.jfa.2005.07.008. Google Scholar

[8]

G. M. CocliteH. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, J. Differential Equations, 246 (2009), 929-963. doi: 10.1016/j.jde.2008.04.014. Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757. Google Scholar

[11]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[12]

A. Constantin, Finite propagation speed for the Camassa-Holm equation J. Math. Phys. , 46 (2005), 023506, 4pp. doi: 10.1063/1.1845603. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328. Google Scholar

[15]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[16]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Uni. Math. J., 47 (1998), 1527-1545. doi: 10.1512/iumj.1998.47.1466. Google Scholar

[17]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. doi: 10.1007/PL00004793. Google Scholar

[18]

A. ConstantinV. S. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[19]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[20]

A. ConstantinR. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, 23 (2010), 2559-2575. doi: 10.1088/0951-7715/23/10/012. Google Scholar

[21]

A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helvetici, 78 (2003), 787-804. doi: 10.1007/s00014-003-0785-6. Google Scholar

[22]

A. ConstantinT. KappelerB. Kolev and B. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Glob. Anal. Geom., 31 (2007), 155-180. doi: 10.1007/s10455-006-9042-8. Google Scholar

[23]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[24]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801. Google Scholar

[25]

R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, 14 November (2003).Google Scholar

[26]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential and Integral Equations, 14 (2001), 953-988. Google Scholar

[27]

A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and perturbation theory (Rome 1998), pp. 23-37. World Sci. Publ. , River Edge, NJ, 1999. Google Scholar

[28]

J. Escher, Non-metric two-component Euler equations on the circle, Monatsh. Math., 167 (2012), 449-459. doi: 10.1007/s00605-011-0323-3. Google Scholar

[29]

J. EscherD. HenryB. Kolev and T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl. (4), 195 (2016), 249-271. doi: 10.1007/s10231-014-0461-z. Google Scholar

[30]

J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z., 269 (2011), 1137-1153. doi: 10.1007/s00209-010-0778-2. Google Scholar

[31]

J. EscherM. Kohlmann and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations, J. Geom. Phys., 61 (2011), 436-452. doi: 10.1016/j.geomphys.2010.10.011. Google Scholar

[32]

J. EscherO. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513. doi: 10.3934/dcds.2007.19.493. Google Scholar

[33]

J. EscherY. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. doi: 10.1016/j.jfa.2006.03.022. Google Scholar

[34]

J. EscherY. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. doi: 10.1512/iumj.2007.56.3040. Google Scholar

[35]

J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293. doi: 10.3934/jgm.2015.7.281. Google Scholar

[36]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation, J. Reine Angew. Math., 624 (2008), 51-80. doi: 10.1515/CRELLE.2008.080. Google Scholar

[37]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equations, 33 (2008), 377-395. doi: 10.1080/03605300701318872. Google Scholar

[38]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508. doi: 10.1016/j.jfa.2008.07.010. Google Scholar

[39]

C. GuanH. He and Z. Yin, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system, Nonlinear Anal. Real World Appl., 25 (2015), 219-237. doi: 10.1016/j.nonrwa.2015.04.001. Google Scholar

[40]

C. GuanH. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, Contemporary Mathematics, 526 (2010), 199-220. doi: 10.1090/conm/526/10382. Google Scholar

[41]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[42]

C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154. doi: 10.1016/j.jfa.2010.11.015. Google Scholar

[43]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. I. H. Poincare-AN, 28 (2011), 623-641. doi: 10.1016/j.anihpc.2011.04.003. Google Scholar

[44]

C. Guan and Z. Yin, On the existence of global weak solutions to an integrable two-component Camassa-Holm shallow-water system, Proc. Edinb. Math. Sic., 56 (2013), 755-775. doi: 10.1017/S0013091513000394. Google Scholar

[45]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nach., 286 (2013), 1287-1304. doi: 10.1002/mana.201200193. Google Scholar

[46]

G. GuiY. Liu and L. Tian, Global existence and blow-up phenomena for the peakon b-family of equations, Indiana Univ. Math. J., 57 (2008), 1209-1234. doi: 10.1512/iumj.2008.57.3213. Google Scholar

[47]

D. Henry, Compactly supported solutions of a family of nonlinear partial differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 145-150. Google Scholar

[48]

D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573. doi: 10.1016/j.na.2008.02.104. Google Scholar

[49]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 27 (2007), 511-522. doi: 10.1007/s00220-006-0172-4. Google Scholar

[50]

H. He and Z. Yin, Well-posedness and analytic solutions of a two-component water wave equation, J. Math. Anal. Appl., 434 (2016), 353-375. doi: 10.1016/j.jmaa.2015.08.063. Google Scholar

[51]

R. Ivanov, Water waves and integrability, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2267-2280. doi: 10.1098/rsta.2007.2007. Google Scholar

[52]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005), 72-82. doi: 10.1016/j.jmaa.2004.11.038. Google Scholar

[53]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683. Google Scholar

[54]

J. Li and Z. Yin, Well-posedness and global existence for a generalized Degasperis-Procesi equation, Nonlinear Anal. Real World Appl., 28 (2016), 72-90. doi: 10.1016/j.nonrwa.2015.09.003. Google Scholar

[55]

J. Li and Z. Yin, Well-posedness and analytic solutions of the two-component Euler-Poincaré system, Monatsh Math., (2016), 1-29. doi: 10.1007/s00605-016-0927-8. Google Scholar

[56]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267 (2006), 801-820. doi: 10.1007/s00220-006-0082-5. Google Scholar

[57]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. doi: 10.1088/0266-5611/19/6/001. Google Scholar

[58]

W. Luo and Z. Yin, Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space, Nonlinear Anal., 122 (2015), 1-22. doi: 10.1016/j.na.2015.03.022. Google Scholar

[59]

Y Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse Problems, 21 (2005), 1553-1570. doi: 10.1088/0266-5611/21/5/004. Google Scholar

[60]

C. MuS. Zhou and R. Zeng, Well-posedness and blow-up phenomena for a higher order shallow water equation, J. Differential Equations, 251 (2011), 3488-3499. doi: 10.1016/j.jde.2011.08.020. Google Scholar

[61]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X. Google Scholar

[62]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582. doi: 10.1016/j.jde.2011.08.010. Google Scholar

[63]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226. doi: 10.1016/j.jfa.2011.04.015. Google Scholar

[64]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. Google Scholar

[65]

Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation, Discrete Continuous Dynam. Systems, 11 (2004), 393-411. doi: 10.3934/dcds.2004.11.393. Google Scholar

[66]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Ⅲ. J. Math., 47 (2003), 649-666. Google Scholar

[67]

Z. Yin, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139. doi: 10.1016/S0022-247X(03)00250-6. Google Scholar

[68]

Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194. doi: 10.1016/j.jfa.2003.07.010. Google Scholar

[69]

Z. Yin, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209. doi: 10.1512/iumj.2004.53.2479. Google Scholar

[70]

S. Zhang and Z. Yin, Global solutions and blow-up phenomena for the periodic b-equation, J. Lond. Math. Soc., 82 (2010), 482-500. doi: 10.1112/jlms/jdq044. Google Scholar

show all references

References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations Springer-Verlag Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. Camassa and D. D. Holm, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0. Google Scholar

[6]

M. ChenS.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15. doi: 10.1007/s11005-005-0041-7. Google Scholar

[7]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. doi: 10.1016/j.jfa.2005.07.008. Google Scholar

[8]

G. M. CocliteH. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, J. Differential Equations, 246 (2009), 929-963. doi: 10.1016/j.jde.2008.04.014. Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757. Google Scholar

[11]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[12]

A. Constantin, Finite propagation speed for the Camassa-Holm equation J. Math. Phys. , 46 (2005), 023506, 4pp. doi: 10.1063/1.1845603. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328. Google Scholar

[15]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[16]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Uni. Math. J., 47 (1998), 1527-1545. doi: 10.1512/iumj.1998.47.1466. Google Scholar

[17]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. doi: 10.1007/PL00004793. Google Scholar

[18]

A. ConstantinV. S. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[19]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[20]

A. ConstantinR. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, 23 (2010), 2559-2575. doi: 10.1088/0951-7715/23/10/012. Google Scholar

[21]

A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helvetici, 78 (2003), 787-804. doi: 10.1007/s00014-003-0785-6. Google Scholar

[22]

A. ConstantinT. KappelerB. Kolev and B. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Glob. Anal. Geom., 31 (2007), 155-180. doi: 10.1007/s10455-006-9042-8. Google Scholar

[23]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[24]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801. Google Scholar

[25]

R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, 14 November (2003).Google Scholar

[26]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential and Integral Equations, 14 (2001), 953-988. Google Scholar

[27]

A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and perturbation theory (Rome 1998), pp. 23-37. World Sci. Publ. , River Edge, NJ, 1999. Google Scholar

[28]

J. Escher, Non-metric two-component Euler equations on the circle, Monatsh. Math., 167 (2012), 449-459. doi: 10.1007/s00605-011-0323-3. Google Scholar

[29]

J. EscherD. HenryB. Kolev and T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl. (4), 195 (2016), 249-271. doi: 10.1007/s10231-014-0461-z. Google Scholar

[30]

J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z., 269 (2011), 1137-1153. doi: 10.1007/s00209-010-0778-2. Google Scholar

[31]

J. EscherM. Kohlmann and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations, J. Geom. Phys., 61 (2011), 436-452. doi: 10.1016/j.geomphys.2010.10.011. Google Scholar

[32]

J. EscherO. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513. doi: 10.3934/dcds.2007.19.493. Google Scholar

[33]

J. EscherY. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. doi: 10.1016/j.jfa.2006.03.022. Google Scholar

[34]

J. EscherY. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. doi: 10.1512/iumj.2007.56.3040. Google Scholar

[35]

J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293. doi: 10.3934/jgm.2015.7.281. Google Scholar

[36]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation, J. Reine Angew. Math., 624 (2008), 51-80. doi: 10.1515/CRELLE.2008.080. Google Scholar

[37]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equations, 33 (2008), 377-395. doi: 10.1080/03605300701318872. Google Scholar

[38]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508. doi: 10.1016/j.jfa.2008.07.010. Google Scholar

[39]

C. GuanH. He and Z. Yin, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system, Nonlinear Anal. Real World Appl., 25 (2015), 219-237. doi: 10.1016/j.nonrwa.2015.04.001. Google Scholar

[40]

C. GuanH. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, Contemporary Mathematics, 526 (2010), 199-220. doi: 10.1090/conm/526/10382. Google Scholar

[41]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[42]

C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154. doi: 10.1016/j.jfa.2010.11.015. Google Scholar

[43]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. I. H. Poincare-AN, 28 (2011), 623-641. doi: 10.1016/j.anihpc.2011.04.003. Google Scholar

[44]

C. Guan and Z. Yin, On the existence of global weak solutions to an integrable two-component Camassa-Holm shallow-water system, Proc. Edinb. Math. Sic., 56 (2013), 755-775. doi: 10.1017/S0013091513000394. Google Scholar

[45]

C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nach., 286 (2013), 1287-1304. doi: 10.1002/mana.201200193. Google Scholar

[46]

G. GuiY. Liu and L. Tian, Global existence and blow-up phenomena for the peakon b-family of equations, Indiana Univ. Math. J., 57 (2008), 1209-1234. doi: 10.1512/iumj.2008.57.3213. Google Scholar

[47]

D. Henry, Compactly supported solutions of a family of nonlinear partial differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 145-150. Google Scholar

[48]

D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573. doi: 10.1016/j.na.2008.02.104. Google Scholar

[49]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 27 (2007), 511-522. doi: 10.1007/s00220-006-0172-4. Google Scholar

[50]

H. He and Z. Yin, Well-posedness and analytic solutions of a two-component water wave equation, J. Math. Anal. Appl., 434 (2016), 353-375. doi: 10.1016/j.jmaa.2015.08.063. Google Scholar

[51]

R. Ivanov, Water waves and integrability, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2267-2280. doi: 10.1098/rsta.2007.2007. Google Scholar

[52]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005), 72-82. doi: 10.1016/j.jmaa.2004.11.038. Google Scholar

[53]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683. Google Scholar

[54]

J. Li and Z. Yin, Well-posedness and global existence for a generalized Degasperis-Procesi equation, Nonlinear Anal. Real World Appl., 28 (2016), 72-90. doi: 10.1016/j.nonrwa.2015.09.003. Google Scholar

[55]

J. Li and Z. Yin, Well-posedness and analytic solutions of the two-component Euler-Poincaré system, Monatsh Math., (2016), 1-29. doi: 10.1007/s00605-016-0927-8. Google Scholar

[56]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267 (2006), 801-820. doi: 10.1007/s00220-006-0082-5. Google Scholar

[57]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. doi: 10.1088/0266-5611/19/6/001. Google Scholar

[58]

W. Luo and Z. Yin, Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space, Nonlinear Anal., 122 (2015), 1-22. doi: 10.1016/j.na.2015.03.022. Google Scholar

[59]

Y Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse Problems, 21 (2005), 1553-1570. doi: 10.1088/0266-5611/21/5/004. Google Scholar

[60]

C. MuS. Zhou and R. Zeng, Well-posedness and blow-up phenomena for a higher order shallow water equation, J. Differential Equations, 251 (2011), 3488-3499. doi: 10.1016/j.jde.2011.08.020. Google Scholar

[61]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X. Google Scholar

[62]

W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582. doi: 10.1016/j.jde.2011.08.010. Google Scholar

[63]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226. doi: 10.1016/j.jfa.2011.04.015. Google Scholar

[64]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. Google Scholar

[65]

Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation, Discrete Continuous Dynam. Systems, 11 (2004), 393-411. doi: 10.3934/dcds.2004.11.393. Google Scholar

[66]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Ⅲ. J. Math., 47 (2003), 649-666. Google Scholar

[67]

Z. Yin, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139. doi: 10.1016/S0022-247X(03)00250-6. Google Scholar

[68]

Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194. doi: 10.1016/j.jfa.2003.07.010. Google Scholar

[69]

Z. Yin, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209. doi: 10.1512/iumj.2004.53.2479. Google Scholar

[70]

S. Zhang and Z. Yin, Global solutions and blow-up phenomena for the periodic b-equation, J. Lond. Math. Soc., 82 (2010), 482-500. doi: 10.1112/jlms/jdq044. Google Scholar

[1]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[2]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[3]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[4]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[5]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[6]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[7]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[8]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[9]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[10]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[11]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[12]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[13]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[14]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[15]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[16]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[17]

Qiaoyi Hu, Zhixin Wu, Yumei Sun. Liouville theorems for periodic two-component shallow water systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3085-3097. doi: 10.3934/dcds.2018134

[18]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[19]

Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019

[20]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (26)
  • HTML views (9)
  • Cited by (0)

Other articles
by authors

[Back to Top]