In this paper, we mainly consider the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators: $m=(1-\partial_x^2)^su, s>1$. By Littlewood-Paley theory and transport equation theory, we first establish the local well-posedness of the generalized b-equation with fractional higher-order inertia operators which is the subsystem of the generalized two-component water wave system. Then we prove the local well-posedness of the generalized two-component water wave system with fractional higher-order inertia operators. Next, we present the blow-up criteria for these systems. Moreover, we obtain some global existence results for these systems.
Citation: |
[1] |
H. Bahouri, J. -Y. Chemin and R. Danchin,
Fourier Analysis and Nonlinear Partial Differential Equations Springer-Verlag Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7.![]() ![]() ![]() |
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z.![]() ![]() ![]() |
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.
doi: 10.1142/S0219530507000857.![]() ![]() ![]() |
[4] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.![]() ![]() ![]() |
[5] |
R. Camassa and D. D. Holm, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.
doi: 10.1016/S0065-2156(08)70254-0.![]() ![]() |
[6] |
M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15.
doi: 10.1007/s11005-005-0041-7.![]() ![]() ![]() |
[7] |
G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91.
doi: 10.1016/j.jfa.2005.07.008.![]() ![]() ![]() |
[8] |
G. M. Coclite, H. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, J. Differential Equations, 246 (2009), 929-963.
doi: 10.1016/j.jde.2008.04.014.![]() ![]() ![]() |
[9] |
A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.
doi: 10.1006/jfan.1997.3231.![]() ![]() ![]() |
[10] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757.![]() ![]() ![]() |
[11] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970.
doi: 10.1098/rspa.2000.0701.![]() ![]() ![]() |
[12] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation J. Math. Phys. , 46 (2005), 023506, 4pp.
doi: 10.1063/1.1845603.![]() ![]() ![]() |
[13] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586.![]() ![]() ![]() |
[14] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328.
![]() ![]() |
[15] |
A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.
doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.![]() ![]() ![]() |
[16] |
A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Uni. Math. J., 47 (1998), 1527-1545.
doi: 10.1512/iumj.1998.47.1466.![]() ![]() ![]() |
[17] |
A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.
doi: 10.1007/PL00004793.![]() ![]() ![]() |
[18] |
A. Constantin, V. S. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.
doi: 10.1088/0266-5611/22/6/017.![]() ![]() ![]() |
[19] |
A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.
doi: 10.1016/j.physleta.2008.10.050.![]() ![]() ![]() |
[20] |
A. Constantin, R. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, 23 (2010), 2559-2575.
doi: 10.1088/0951-7715/23/10/012.![]() ![]() ![]() |
[21] |
A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helvetici, 78 (2003), 787-804.
doi: 10.1007/s00014-003-0785-6.![]() ![]() ![]() |
[22] |
A. Constantin, T. Kappeler, B. Kolev and B. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Glob. Anal. Geom., 31 (2007), 155-180.
doi: 10.1007/s10455-006-9042-8.![]() ![]() ![]() |
[23] |
A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.
doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.![]() ![]() ![]() |
[24] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.
doi: 10.1007/s002200050801.![]() ![]() ![]() |
[25] |
R. Danchin,
Fourier Analysis Methods for PDEs, Lecture Notes, 14 November (2003).
![]() |
[26] |
R. Danchin, A few remarks on the Camassa-Holm equation, Differential and Integral Equations, 14 (2001), 953-988.
![]() ![]() |
[27] |
A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and perturbation theory (Rome 1998), pp. 23-37. World Sci. Publ. , River Edge, NJ, 1999.
![]() ![]() |
[28] |
J. Escher, Non-metric two-component Euler equations on the circle, Monatsh. Math., 167 (2012), 449-459.
doi: 10.1007/s00605-011-0323-3.![]() ![]() ![]() |
[29] |
J. Escher, D. Henry, B. Kolev and T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl. (4), 195 (2016), 249-271.
doi: 10.1007/s10231-014-0461-z.![]() ![]() ![]() |
[30] |
J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z., 269 (2011), 1137-1153.
doi: 10.1007/s00209-010-0778-2.![]() ![]() ![]() |
[31] |
J. Escher, M. Kohlmann and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations, J. Geom. Phys., 61 (2011), 436-452.
doi: 10.1016/j.geomphys.2010.10.011.![]() ![]() ![]() |
[32] |
J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.
doi: 10.3934/dcds.2007.19.493.![]() ![]() ![]() |
[33] |
J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485.
doi: 10.1016/j.jfa.2006.03.022.![]() ![]() ![]() |
[34] |
J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117.
doi: 10.1512/iumj.2007.56.3040.![]() ![]() ![]() |
[35] |
J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293.
doi: 10.3934/jgm.2015.7.281.![]() ![]() ![]() |
[36] |
J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation, J. Reine Angew. Math., 624 (2008), 51-80.
doi: 10.1515/CRELLE.2008.080.![]() ![]() ![]() |
[37] |
J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equations, 33 (2008), 377-395.
doi: 10.1080/03605300701318872.![]() ![]() ![]() |
[38] |
J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508.
doi: 10.1016/j.jfa.2008.07.010.![]() ![]() ![]() |
[39] |
C. Guan, H. He and Z. Yin, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system, Nonlinear Anal. Real World Appl., 25 (2015), 219-237.
doi: 10.1016/j.nonrwa.2015.04.001.![]() ![]() ![]() |
[40] |
C. Guan, H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, Contemporary Mathematics, 526 (2010), 199-220.
doi: 10.1090/conm/526/10382.![]() ![]() ![]() |
[41] |
C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.
doi: 10.1016/j.jde.2009.08.002.![]() ![]() ![]() |
[42] |
C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154.
doi: 10.1016/j.jfa.2010.11.015.![]() ![]() ![]() |
[43] |
C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. I. H. Poincare-AN, 28 (2011), 623-641.
doi: 10.1016/j.anihpc.2011.04.003.![]() ![]() ![]() |
[44] |
C. Guan and Z. Yin, On the existence of global weak solutions to an integrable two-component Camassa-Holm shallow-water system, Proc. Edinb. Math. Sic., 56 (2013), 755-775.
doi: 10.1017/S0013091513000394.![]() ![]() ![]() |
[45] |
C. Guan and Z. Yin, On the global weak solutions for a modified two-component Camassa-Holm equation, Math. Nach., 286 (2013), 1287-1304.
doi: 10.1002/mana.201200193.![]() ![]() ![]() |
[46] |
G. Gui, Y. Liu and L. Tian, Global existence and blow-up phenomena for the peakon b-family of equations, Indiana Univ. Math. J., 57 (2008), 1209-1234.
doi: 10.1512/iumj.2008.57.3213.![]() ![]() ![]() |
[47] |
D. Henry, Compactly supported solutions of a family of nonlinear partial differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 145-150.
![]() ![]() |
[48] |
D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573.
doi: 10.1016/j.na.2008.02.104.![]() ![]() ![]() |
[49] |
A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 27 (2007), 511-522.
doi: 10.1007/s00220-006-0172-4.![]() ![]() ![]() |
[50] |
H. He and Z. Yin, Well-posedness and analytic solutions of a two-component water wave equation, J. Math. Anal. Appl., 434 (2016), 353-375.
doi: 10.1016/j.jmaa.2015.08.063.![]() ![]() ![]() |
[51] |
R. Ivanov, Water waves and integrability, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2267-2280.
doi: 10.1098/rsta.2007.2007.![]() ![]() ![]() |
[52] |
J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005), 72-82.
doi: 10.1016/j.jmaa.2004.11.038.![]() ![]() ![]() |
[53] |
Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683.![]() ![]() ![]() |
[54] |
J. Li and Z. Yin, Well-posedness and global existence for a generalized Degasperis-Procesi equation, Nonlinear Anal. Real World Appl., 28 (2016), 72-90.
doi: 10.1016/j.nonrwa.2015.09.003.![]() ![]() ![]() |
[55] |
J. Li and Z. Yin, Well-posedness and analytic solutions of the two-component Euler-Poincaré system, Monatsh Math., (2016), 1-29.
doi: 10.1007/s00605-016-0927-8.![]() ![]() |
[56] |
Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267 (2006), 801-820.
doi: 10.1007/s00220-006-0082-5.![]() ![]() ![]() |
[57] |
H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245.
doi: 10.1088/0266-5611/19/6/001.![]() ![]() ![]() |
[58] |
W. Luo and Z. Yin, Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space, Nonlinear Anal., 122 (2015), 1-22.
doi: 10.1016/j.na.2015.03.022.![]() ![]() ![]() |
[59] |
Y Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse Problems, 21 (2005), 1553-1570.
doi: 10.1088/0266-5611/21/5/004.![]() ![]() ![]() |
[60] |
C. Mu, S. Zhou and R. Zeng, Well-posedness and blow-up phenomena for a higher order shallow water equation, J. Differential Equations, 251 (2011), 3488-3499.
doi: 10.1016/j.jde.2011.08.020.![]() ![]() ![]() |
[61] |
G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X.![]() ![]() ![]() |
[62] |
W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.
doi: 10.1016/j.jde.2011.08.010.![]() ![]() ![]() |
[63] |
W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.
doi: 10.1016/j.jfa.2011.04.015.![]() ![]() ![]() |
[64] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.![]() ![]() ![]() |
[65] |
Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation, Discrete Continuous Dynam. Systems, 11 (2004), 393-411.
doi: 10.3934/dcds.2004.11.393.![]() ![]() ![]() |
[66] |
Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Ⅲ. J. Math., 47 (2003), 649-666.
![]() ![]() |
[67] |
Z. Yin, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139.
doi: 10.1016/S0022-247X(03)00250-6.![]() ![]() ![]() |
[68] |
Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194.
doi: 10.1016/j.jfa.2003.07.010.![]() ![]() ![]() |
[69] |
Z. Yin, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209.
doi: 10.1512/iumj.2004.53.2479.![]() ![]() ![]() |
[70] |
S. Zhang and Z. Yin, Global solutions and blow-up phenomena for the periodic b-equation, J. Lond. Math. Soc., 82 (2010), 482-500.
doi: 10.1112/jlms/jdq044.![]() ![]() ![]() |