• Previous Article
    Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth
  • DCDS Home
  • This Issue
  • Next Article
    On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators
March  2017, 37(3): 1539-1558. doi: 10.3934/dcds.2017063

Effect of cross-diffusion in the diffusion prey-predator model with a protection zone

1. 

School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi 710071, China

2. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China

Received  April 2016 Revised  October 2016 Published  December 2016

Fund Project: The work is supported by the Natural Science Foundation of China (11271236,11401356,11671243,61672021), the Natural Science Basic Research Plan in Shaanxi Province of China (No.2015JQ1023), the Shaanxi New-star Plan of Science and Technology (No.2015KJXX-21)

In this work, we continue the mathematical study started in [K. Oeda, J. Differential Equations 250 (2011) 3988-4009] on the analytic aspects of the diffusion prey-predator system with a protection zone and cross-diffusion. For small birth rates of two species and large cross-diffusion for the prey, the detailed structure of positive solutions is established by the bifurcation theory and the Lyapunov-Schmidt reduction, which is determined by a finite dimensional limiting system. Moreover, we prove that the stability of positive solutions changes only at every turning point by a spectral analysis for the linearized eigenvalue problem of the limiting system and its perturbation.

Citation: Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063
References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[2]

Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[3]

Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[4]

Y. H. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005.  Google Scholar

[5]

Y. H. DuR. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[6]

X. He and S. N. Zheng, Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2027-2038.  doi: 10.3934/dcdsb.2015.20.2027.  Google Scholar

[7]

X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, preprint, arXiv: 1505.06625. Google Scholar

[8]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, New York, 1966.  Google Scholar

[9]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[10]

K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 10 (2009), 943-965.  doi: 10.1016/j.nonrwa.2007.11.015.  Google Scholar

[11]

K. Kuto, Stability and Hopf bifurcation of steady-state solutions to an SKT model in a spatially heterogeneous environment, Discrete Contin. Dynam. Syst., 24 (2009), 489-509.  doi: 10.3934/dcds.2009.24.489.  Google Scholar

[12]

S. B. Li, J. H. Wu, S. Y. Liu and Y. Y. Dong, Effects of cross-diffusion and protection zone in the Leslie-Gower predator-prey model, submitted. Google Scholar

[13]

J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis. Research Notes in Mathematics vol. 426, CRC Press, Boca Raton, FL, 2001. doi: 10.1201/9781420035506.  Google Scholar

[14]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026.  Google Scholar

[15]

K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520.   Google Scholar

[16]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[17]

Y. X. Wang and W. T. Li, Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system, Nonlinear Anal. Real World Appl., 14 (2013), 1235-1246.  doi: 10.1016/j.nonrwa.2012.09.015.  Google Scholar

[18]

Y. X. Wang and W. T. Li, Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001.  Google Scholar

[19]

Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations (in Chinese), Beijing: Science Press, 1990.  Google Scholar

show all references

References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[2]

Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[3]

Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[4]

Y. H. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005.  Google Scholar

[5]

Y. H. DuR. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[6]

X. He and S. N. Zheng, Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2027-2038.  doi: 10.3934/dcdsb.2015.20.2027.  Google Scholar

[7]

X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, preprint, arXiv: 1505.06625. Google Scholar

[8]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, New York, 1966.  Google Scholar

[9]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[10]

K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 10 (2009), 943-965.  doi: 10.1016/j.nonrwa.2007.11.015.  Google Scholar

[11]

K. Kuto, Stability and Hopf bifurcation of steady-state solutions to an SKT model in a spatially heterogeneous environment, Discrete Contin. Dynam. Syst., 24 (2009), 489-509.  doi: 10.3934/dcds.2009.24.489.  Google Scholar

[12]

S. B. Li, J. H. Wu, S. Y. Liu and Y. Y. Dong, Effects of cross-diffusion and protection zone in the Leslie-Gower predator-prey model, submitted. Google Scholar

[13]

J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis. Research Notes in Mathematics vol. 426, CRC Press, Boca Raton, FL, 2001. doi: 10.1201/9781420035506.  Google Scholar

[14]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026.  Google Scholar

[15]

K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520.   Google Scholar

[16]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[17]

Y. X. Wang and W. T. Li, Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system, Nonlinear Anal. Real World Appl., 14 (2013), 1235-1246.  doi: 10.1016/j.nonrwa.2012.09.015.  Google Scholar

[18]

Y. X. Wang and W. T. Li, Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001.  Google Scholar

[19]

Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations (in Chinese), Beijing: Science Press, 1990.  Google Scholar

[1]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[2]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[3]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[4]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[5]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[6]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[7]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[8]

Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : ⅰ-ⅰ. doi: 10.3934/dcdss.20202i

[9]

Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147

[10]

Renhao Cui, Haomiao Li, Linfeng Mei, Junping Shi. Effect of harvesting quota and protection zone in a reaction-diffusion model arising from fishery management. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 791-807. doi: 10.3934/dcdsb.2017039

[11]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[12]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[13]

Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745

[14]

Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641

[15]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[16]

F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239

[17]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[18]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[19]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[20]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (29)
  • HTML views (4)
  • Cited by (1)

Other articles
by authors

[Back to Top]