• Previous Article
    Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions
  • DCDS Home
  • This Issue
  • Next Article
    Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth
March  2017, 37(3): 1575-1601. doi: 10.3934/dcds.2017065

On an $N$-Component Camassa-Holm equation with peakons

1. 

College of Mathematics and Computer Sciences, Yangtze Normal University, Fuling 408100, Chongqing, China

2. 

Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

3. 

College of Mathematics and and Statistics, Chongqing University, Chongqing 401331, China

Received  December 2015 Revised  September 2016 Published  December 2016

Fund Project: This work was supported by NSF of China (11401050,11671055,11371384)

In this paper, we are concerned with $N$-Component Camassa-Holm equation with peakons. Firstly, we establish the local well-posedness in a range of the Besov spaces by using Littlewood-Paley decomposition and transport equation theory. Secondly, we present a precise blowup scenario and several blowup results for strong solutions to that system, we then obtain the blowup rate of strong solutions when a blowup occurs. Next, we investigate the persistence property for the strong solutions. Finally, we consider the initial boundary value problem, our approach is based on sharp extension results for functions on the half-line and several symmetry preserving properties of the equations under discussion.

Citation: Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065
References:
[1]

M. Baouendi and C. Goulaouic, Remarks on the abstract form of nonlinear Cauchy-Kowalevski theorems, Commun. Partial Differential Equation, 2 (1977), 1151-1162. doi: 10.1080/03605307708820057. Google Scholar

[2]

M. Baouendi and C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application to the Cauchy problems, J. Differential Equations, 48 (1983), 241-268. doi: 10.1016/0022-0396(83)90051-7. Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[4]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[5]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[6]

J. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings, CRM series, Pisa, 1 (2004), 53–135. Google Scholar

[7]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757. Google Scholar

[8]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[10]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[11]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[12]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. doi: 10.1007/PL00004793. Google Scholar

[15]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa., 26 (1998), 303-328. Google Scholar

[16]

A. ConstantinV. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[17]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A., 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[18]

A. ConstantinT. KappelerB. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180. doi: 10.1007/s10455-006-9042-8. Google Scholar

[19]

A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Commentarii Mathematici Helvetici, 78 (2003), 787-804. doi: 10.1007/s00014-003-0785-6. Google Scholar

[20]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2. Google Scholar

[21]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[22]

A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[23]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988. Google Scholar

[24]

R. Danchin, Fourier analysis methods for PDEs, Lecture Notes, 14 November, 2003.Google Scholar

[25]

R. Dachin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444. doi: 10.1016/S0022-0396(03)00096-2. Google Scholar

[26]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508. doi: 10.1016/j.jfa.2008.07.010. Google Scholar

[27]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equation, 33 (2008), 377-395. doi: 10.1080/03605300701318872. Google Scholar

[28]

Y. Fu, G. Gui, Y. Liu and Z. Qu, On the Cauchy problemfor the integrable Camassa-Holm type equation with cubic nonlinearity, arXiv: 1108.5368v2, 1–27.Google Scholar

[29]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modified twocomponent periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448. doi: 10.1007/s00208-010-0483-9. Google Scholar

[30]

Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons J. Math. Phys. , 50 (2009), 012906, 25pp. doi: 10.1063/1.3064810. Google Scholar

[31]

Y. Fu and C. Qu, On a new Three-Component Camassa-Holm equation with peakons, Comm. Theor. Phys., 53 (2010), 223-230. Google Scholar

[32]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278. doi: 10.1016/j.jfa.2010.02.008. Google Scholar

[33]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66. doi: 10.1007/s00209-009-0660-2. Google Scholar

[34]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522. doi: 10.1007/s00220-006-0172-4. Google Scholar

[35]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-a Lagrangianpoiny of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549. doi: 10.1080/03605300601088674. Google Scholar

[36]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112. doi: 10.3934/dcds.2009.24.1047. Google Scholar

[37]

Q. HuL. Lin and J. Jin, Well-posedness and blow-up phenomena for a new three-component Camassa-Holm system with peakons, J. Hyper. Differential Equations, 9 (2012), 451-467. doi: 10.1142/S0219891612500142. Google Scholar

[38]

D. Holm and R. Ivanov, Multi-component generalizations of the CH equation: Geometrical aspects, peakons and numerical examples J. Phys. A 43 (2010), 492001, 20pp. doi: 10.1088/1751-8113/43/49/492001. Google Scholar

[39]

D. Holm and R. Ivanov, Two-component CH system: Inverse scattering, peakons and geometry Inverse Problems 27 (2011), 045013, 19pp. doi: 10.1088/0266-5611/27/4/045013. Google Scholar

[40]

D. Holm, L. Onaraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation Phys. Rev. E. , 79 (2009), 016601, 13pp. doi: 10.1103/PhysRevE.79.016601. Google Scholar

[41]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[42]

S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 891-868. doi: 10.1063/1.532690. Google Scholar

[43]

J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151-163. doi: 10.2991/jnmp.2004.11.2.2. Google Scholar

[44]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683. Google Scholar

[45]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208. doi: 10.1016/S0393-0440(97)00010-7. Google Scholar

[46]

L. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-Holm equation, Proc. Amer. Math. Soc., 140 (2012), 607-614. doi: 10.1090/S0002-9939-2011-10922-5. Google Scholar

[47]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations J. Math. Phys. , 52 (2011), 063702, 29pp. doi: 10.1063/1.3600216. Google Scholar

[48]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Differ. Equ. , 2010 (2010), Art. ID 512812, 30 pp. Google Scholar

[49]

J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. Google Scholar

[50]

Zhu and Blow-up, Global Existence and Persistence Properties for the Coupled Camassa-Holm equations, Math Phys. Anal Geom., 14 (2011), 197-209. doi: 10.1007/s11040-011-9094-2. Google Scholar

show all references

References:
[1]

M. Baouendi and C. Goulaouic, Remarks on the abstract form of nonlinear Cauchy-Kowalevski theorems, Commun. Partial Differential Equation, 2 (1977), 1151-1162. doi: 10.1080/03605307708820057. Google Scholar

[2]

M. Baouendi and C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application to the Cauchy problems, J. Differential Equations, 48 (1983), 241-268. doi: 10.1016/0022-0396(83)90051-7. Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[4]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[5]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[6]

J. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings, CRM series, Pisa, 1 (2004), 53–135. Google Scholar

[7]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757. Google Scholar

[8]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[10]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[11]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[12]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. doi: 10.1007/PL00004793. Google Scholar

[15]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa., 26 (1998), 303-328. Google Scholar

[16]

A. ConstantinV. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[17]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A., 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[18]

A. ConstantinT. KappelerB. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180. doi: 10.1007/s10455-006-9042-8. Google Scholar

[19]

A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Commentarii Mathematici Helvetici, 78 (2003), 787-804. doi: 10.1007/s00014-003-0785-6. Google Scholar

[20]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2. Google Scholar

[21]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[22]

A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[23]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988. Google Scholar

[24]

R. Danchin, Fourier analysis methods for PDEs, Lecture Notes, 14 November, 2003.Google Scholar

[25]

R. Dachin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444. doi: 10.1016/S0022-0396(03)00096-2. Google Scholar

[26]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508. doi: 10.1016/j.jfa.2008.07.010. Google Scholar

[27]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equation, 33 (2008), 377-395. doi: 10.1080/03605300701318872. Google Scholar

[28]

Y. Fu, G. Gui, Y. Liu and Z. Qu, On the Cauchy problemfor the integrable Camassa-Holm type equation with cubic nonlinearity, arXiv: 1108.5368v2, 1–27.Google Scholar

[29]

Y. FuY. Liu and C. Qu, Well-posedness and blow-up solution for a modified twocomponent periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448. doi: 10.1007/s00208-010-0483-9. Google Scholar

[30]

Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons J. Math. Phys. , 50 (2009), 012906, 25pp. doi: 10.1063/1.3064810. Google Scholar

[31]

Y. Fu and C. Qu, On a new Three-Component Camassa-Holm equation with peakons, Comm. Theor. Phys., 53 (2010), 223-230. Google Scholar

[32]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278. doi: 10.1016/j.jfa.2010.02.008. Google Scholar

[33]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66. doi: 10.1007/s00209-009-0660-2. Google Scholar

[34]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522. doi: 10.1007/s00220-006-0172-4. Google Scholar

[35]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-a Lagrangianpoiny of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549. doi: 10.1080/03605300601088674. Google Scholar

[36]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112. doi: 10.3934/dcds.2009.24.1047. Google Scholar

[37]

Q. HuL. Lin and J. Jin, Well-posedness and blow-up phenomena for a new three-component Camassa-Holm system with peakons, J. Hyper. Differential Equations, 9 (2012), 451-467. doi: 10.1142/S0219891612500142. Google Scholar

[38]

D. Holm and R. Ivanov, Multi-component generalizations of the CH equation: Geometrical aspects, peakons and numerical examples J. Phys. A 43 (2010), 492001, 20pp. doi: 10.1088/1751-8113/43/49/492001. Google Scholar

[39]

D. Holm and R. Ivanov, Two-component CH system: Inverse scattering, peakons and geometry Inverse Problems 27 (2011), 045013, 19pp. doi: 10.1088/0266-5611/27/4/045013. Google Scholar

[40]

D. Holm, L. Onaraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation Phys. Rev. E. , 79 (2009), 016601, 13pp. doi: 10.1103/PhysRevE.79.016601. Google Scholar

[41]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[42]

S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 891-868. doi: 10.1063/1.532690. Google Scholar

[43]

J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151-163. doi: 10.2991/jnmp.2004.11.2.2. Google Scholar

[44]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683. Google Scholar

[45]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208. doi: 10.1016/S0393-0440(97)00010-7. Google Scholar

[46]

L. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-Holm equation, Proc. Amer. Math. Soc., 140 (2012), 607-614. doi: 10.1090/S0002-9939-2011-10922-5. Google Scholar

[47]

L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations J. Math. Phys. , 52 (2011), 063702, 29pp. doi: 10.1063/1.3600216. Google Scholar

[48]

L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Differ. Equ. , 2010 (2010), Art. ID 512812, 30 pp. Google Scholar

[49]

J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. Google Scholar

[50]

Zhu and Blow-up, Global Existence and Persistence Properties for the Coupled Camassa-Holm equations, Math Phys. Anal Geom., 14 (2011), 197-209. doi: 10.1007/s11040-011-9094-2. Google Scholar

[1]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[2]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[3]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[4]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[5]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[6]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[7]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[8]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[9]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[10]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[11]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[12]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[13]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[14]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[15]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[16]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[17]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[18]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[19]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[20]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]