March  2017, 37(3): 1603-1630. doi: 10.3934/dcds.2017066

Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8914, Japan

Received  July 2014 Revised  October 2016 Published  December 2016

We prove the existence of solutions of degenerate parabolic-parabolic Keller-Segel system with no-flux and Neumann boundary conditions for each variable respectively, under the assumption that the total mass of the first variable is below a certain constant. The proof relies on the interpretation of the system as a gradient flow in the product space of the Wasserstein space and the standard $L^2$-space. More precisely, we apply the ''minimizing movement'' scheme and show a certain critical mass appears in the application of this scheme to our problem.

Citation: Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures Lectures in Mathematics, Birkhäuser, 2005. Google Scholar

[3]

L. Ambrosio and G. Savaré, Gradient flows of probability measures, Handbook of differential equations: Evolutionary equations, Handb. Differ. Equ. , Elsevier/North-Holland, Amsterdam, Ⅲ (2007), 1–136. Google Scholar

[4]

J. BedrossianN. Rodríguez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714. Google Scholar

[5]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[6]

A. BlanchetJ. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168. Google Scholar

[7]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44 (2006), 32 pp. (electronic). Google Scholar

[8]

A. Blanchet and Ph. Laurençcot, The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in $\mathbb{R}^d, d ≥q 3$, Comm. Partial Differential Equations, 38 (2013), 658-686. Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb{R}^2$, Commun. Math. Sci., 6 (2008), 417-447. Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 195 (1998), 77-114. Google Scholar

[11]

M. A. Herrero and J. J. L. Velázquez, Chemotaxis collapse for Keller-Segel model, J. Math. Biol., 35 (1996), 177-194. Google Scholar

[12]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623. Google Scholar

[13]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596. Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. Google Scholar

[15]

D. MatthesR. J. McCann and G. Savarß, A family of nonlinear fourth order equations of gradient flow type, Comm. Part. Diff. Eqs., 34 (2009), 1352-1397. Google Scholar

[16]

N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differential Equations, 48 (2013), 491-505. Google Scholar

[17]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[18]

F. Otto, Doubly degenerate diffusion equations as steepest descent, Manuscript, 1996.Google Scholar

[19]

T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅱ. Blowup threshold, Differential Integral Equations, 22 (2009), 1153-1172. Google Scholar

[20]

M. Taylor, Partial Differential Equations I Springer New York, 1996. Google Scholar

[21]

C. Villani, Topics in Optimal Transportation Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003. Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures Lectures in Mathematics, Birkhäuser, 2005. Google Scholar

[3]

L. Ambrosio and G. Savaré, Gradient flows of probability measures, Handbook of differential equations: Evolutionary equations, Handb. Differ. Equ. , Elsevier/North-Holland, Amsterdam, Ⅲ (2007), 1–136. Google Scholar

[4]

J. BedrossianN. Rodríguez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714. Google Scholar

[5]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[6]

A. BlanchetJ. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168. Google Scholar

[7]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44 (2006), 32 pp. (electronic). Google Scholar

[8]

A. Blanchet and Ph. Laurençcot, The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in $\mathbb{R}^d, d ≥q 3$, Comm. Partial Differential Equations, 38 (2013), 658-686. Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb{R}^2$, Commun. Math. Sci., 6 (2008), 417-447. Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 195 (1998), 77-114. Google Scholar

[11]

M. A. Herrero and J. J. L. Velázquez, Chemotaxis collapse for Keller-Segel model, J. Math. Biol., 35 (1996), 177-194. Google Scholar

[12]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623. Google Scholar

[13]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596. Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. Google Scholar

[15]

D. MatthesR. J. McCann and G. Savarß, A family of nonlinear fourth order equations of gradient flow type, Comm. Part. Diff. Eqs., 34 (2009), 1352-1397. Google Scholar

[16]

N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differential Equations, 48 (2013), 491-505. Google Scholar

[17]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[18]

F. Otto, Doubly degenerate diffusion equations as steepest descent, Manuscript, 1996.Google Scholar

[19]

T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅱ. Blowup threshold, Differential Integral Equations, 22 (2009), 1153-1172. Google Scholar

[20]

M. Taylor, Partial Differential Equations I Springer New York, 1996. Google Scholar

[21]

C. Villani, Topics in Optimal Transportation Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003. Google Scholar

[1]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[2]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[3]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[4]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[5]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[6]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[7]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[8]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[9]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[10]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[11]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[12]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[13]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[14]

Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9

[15]

Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107

[16]

Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020

[17]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[18]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[19]

José Antonio Carrillo, Stefano Lisini, Edoardo Mainini. Uniqueness for Keller-Segel-type chemotaxis models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1319-1338. doi: 10.3934/dcds.2014.34.1319

[20]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (11)
  • Cited by (0)

Other articles
by authors

[Back to Top]