March  2017, 37(3): 1691-1706. doi: 10.3934/dcds.2017070

A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition

Department of Mathematics, King Abdulaziz University, P.O. 80230, Jeddah, Kingdom of Saudi Arabia

Received  June 2016 Revised  October 2016 Published  December 2016

In this paper we consider the following nonlinear critical problem: $-Δ u= (1+\varepsilon_0 K_0(x)) u^\frac{n+2}{n-2}$, $u>0$ in $Ω$, $u=0$, on $\partial Ω$, where $Ω$ is a bounded domain of $\mathbb{R}^n$, $K_0$ is a given function and $\varepsilon_0$ is a small parameter. Under the assumption that $K_0$ is flat near its critical points, we prove an existence result in terms of the Euler-Hopf index. We believe that it is the very first result in this direction that we do not need any restrictions on the flatness coefficient.

Citation: Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070
References:
[1]

A. AmbrosettiJ. Garcia Azorero and I. Peral, Perturbation of $ - \Delta u + {u^{\frac{{\left( {N + 2} \right)}}{{\left( {N - 2} \right)}}}} = 0 $, the Scalar Curvature Problem in $ {\mathbb{R}^N} $ and related topics, Journal of Functional Analysis, 165 (1999), 117-149. doi: 10.1006/jfan.1999.3390.

[2]

A. Ambrosetti and M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. Henri. Poincaré. ANL, 15 (1998), 233-252. doi: 10.1016/S0294-1449(97)89300-6.

[3]

A. Ambrosetti and M. Badiale, Variational perturbative methods and bifurcation of bound states from the essential spectrum, Proc. Royal. Soc. Edinburgh., 128 (1998), 1131-1161. doi: 10.1017/S0308210500027268.

[4]

A. Ambrosetti and A. Malchiodi, A multiplicity result for the Yamabe problem on Sn, Journal of Functional Analysis, 168 (1999), 529-561. doi: 10.1006/jfan.1999.3458.

[5]

A. Bahri, Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math, Ser, 182 Longman Sci. Tech. Harlow, 1989.

[6]

A. Bahri, An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J., 81 (1996), 323-466. doi: 10.1215/S0012-7094-96-08116-8.

[7]

A. Bahri and J. M. Coron, The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172. doi: 10.1016/0022-1236(91)90026-2.

[8]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain, Comm. Pure Appli. Math., 41 (1988), 255-294. doi: 10.1002/cpa.3160410302.

[9]

A. Bahri and P. H. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.

[10]

M. Ben Ayed and M. Hammami, On a variational problem involving critical Sobolev growth in dimension four, Advances in Differential Equations, 9 (2004), 415-446.

[11]

R. Ben Mahmoud and H. Chtioui, Existence results for the prescribed scalar curvature on $ {\mathbb{S}^3} $, Annales de l'Institut Fourier, (Grenoble), 61 (2011), 971-986. doi: 10.5802/aif.2634.

[12]

R. Ben Mahmoud and H. Chtioui, Prescribing the scalar curvature problem on higherdimensional manifolds, Discrete Contin. Dyn. Syst., 32 (2012), 1857-1879. doi: 10.3934/dcds.2012.32.1857.

[13]

A. Bensouf and H. Chtioui, Conformal metrics with prescribed Q-curvature on Sn, Calc. Var. Partial Differential Equations, 41 (2011), 455-481. doi: 10.1007/s00526-010-0372-9.

[14]

Z. Bouchech and H. Chtioui, Multiplicity and existence results for a nonlinear elliptic equation with Sobolev exponent, Advanced Nonlinear Studies, 10 (2010), 537-571. doi: 10.1515/ans-2010-0302.

[15]

H. Brezis and J. M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., 89 (1985), 21-56. doi: 10.1007/BF00281744.

[16]

D. CaoE. Noussair and S. Yang, On the scalar curvature equation $ - \Delta u = \left( {1 + \varepsilon K} \right){u^{\frac{{n + 2}}{{n - 2}}}}\;{\rm{in}}\;{\mathbb{R}^n} $, Calc. Var., 15 (2002), 403-419. doi: 10.1007/s00526-002-0137-1.

[17]

S. Y. Chang and P. Yang, A perturbation result in prescribing scalar curvature on Sn, Duke Math. J., 64 (1991), 27-69. doi: 10.1215/S0012-7094-91-06402-1.

[18]

S. A. ChangM. J. Gursky and P. C. Yang, The scalar curvature equation on 2 and 3 spheres, Calc. Var. Partial Differential Equations, 1 (1993), 205-229. doi: 10.1007/BF01191617.

[19]

X. Chen and X. Xu, The scalar curvature flow on Sn-Perturbation theorem revisited, Inventiones Math., 187 (2012), 395-506. doi: 10.1007/s00222-011-0335-6.

[20]

H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds, Advanced Nonlinear Studies, 3 (2003), 457-470. doi: 10.1515/ans-2003-0404.

[21]

H. ChtiouiR. Ben Mahmoud and D. A. Abuzaid, Conformal transformation of metrics on the n-sphere, Nonlinear Analysis: TMA, 82 (2013), 66-81. doi: 10.1016/j.na.2013.01.003.

[22]

J. M. Coron, Topologie et cas limite del injections de Sobolev, C.R. Acad. Sc. Paris, 299 (1984), 209-212.

[23]

E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc., 20 (1988), 600-602. doi: 10.1112/blms/20.6.600.

[24]

E. Hebey, La methode d'isometrie concentration dans le cas d'un probléme non linéaire sur les varietés compactes á bord avec exposant critique de Sobolev, Bulletin des Sciences Mathématiques, 116 (1992), 35-51.

[25]

M. Ji, Scalar curvature equation on Sn, Part Ⅰ: Topological conditions, J. Diff. Equa., 246 (2009), 749-787. doi: 10.1016/j.jde.2008.04.011.

[26]

Y. Y. Li, Prescribing Scalar Curvature on S3, S4 and Related Problems, Journal of Functional Analysis, 118 (1993), 43-118. doi: 10.1006/jfan.1993.1138.

[27]

Y. Y. Li, Prescribing scalar curvature on $S^{n}$ and related topics, Part Ⅰ, Journal of Differential Equations, 120 (1995), 319-410. doi: 10.1006/jdeq.1995.1115.

[28]

A. Malchiodi, The scalar curvature problem on Sn: An approach via Morse theory, Calc. Var., 14 (2002), 429-445. doi: 10.1007/s005260100110.

[29]

S. Pohozaev, Eigenfunctions of the equation $Δ u + λ f(u) = 0$, Soviet Math. Dokl., 6 (1965), 1408-1411.

[30]

M. Struwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., 187 (1984), 511-517. doi: 10.1007/BF01174186.

show all references

References:
[1]

A. AmbrosettiJ. Garcia Azorero and I. Peral, Perturbation of $ - \Delta u + {u^{\frac{{\left( {N + 2} \right)}}{{\left( {N - 2} \right)}}}} = 0 $, the Scalar Curvature Problem in $ {\mathbb{R}^N} $ and related topics, Journal of Functional Analysis, 165 (1999), 117-149. doi: 10.1006/jfan.1999.3390.

[2]

A. Ambrosetti and M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. Henri. Poincaré. ANL, 15 (1998), 233-252. doi: 10.1016/S0294-1449(97)89300-6.

[3]

A. Ambrosetti and M. Badiale, Variational perturbative methods and bifurcation of bound states from the essential spectrum, Proc. Royal. Soc. Edinburgh., 128 (1998), 1131-1161. doi: 10.1017/S0308210500027268.

[4]

A. Ambrosetti and A. Malchiodi, A multiplicity result for the Yamabe problem on Sn, Journal of Functional Analysis, 168 (1999), 529-561. doi: 10.1006/jfan.1999.3458.

[5]

A. Bahri, Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math, Ser, 182 Longman Sci. Tech. Harlow, 1989.

[6]

A. Bahri, An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J., 81 (1996), 323-466. doi: 10.1215/S0012-7094-96-08116-8.

[7]

A. Bahri and J. M. Coron, The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172. doi: 10.1016/0022-1236(91)90026-2.

[8]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain, Comm. Pure Appli. Math., 41 (1988), 255-294. doi: 10.1002/cpa.3160410302.

[9]

A. Bahri and P. H. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.

[10]

M. Ben Ayed and M. Hammami, On a variational problem involving critical Sobolev growth in dimension four, Advances in Differential Equations, 9 (2004), 415-446.

[11]

R. Ben Mahmoud and H. Chtioui, Existence results for the prescribed scalar curvature on $ {\mathbb{S}^3} $, Annales de l'Institut Fourier, (Grenoble), 61 (2011), 971-986. doi: 10.5802/aif.2634.

[12]

R. Ben Mahmoud and H. Chtioui, Prescribing the scalar curvature problem on higherdimensional manifolds, Discrete Contin. Dyn. Syst., 32 (2012), 1857-1879. doi: 10.3934/dcds.2012.32.1857.

[13]

A. Bensouf and H. Chtioui, Conformal metrics with prescribed Q-curvature on Sn, Calc. Var. Partial Differential Equations, 41 (2011), 455-481. doi: 10.1007/s00526-010-0372-9.

[14]

Z. Bouchech and H. Chtioui, Multiplicity and existence results for a nonlinear elliptic equation with Sobolev exponent, Advanced Nonlinear Studies, 10 (2010), 537-571. doi: 10.1515/ans-2010-0302.

[15]

H. Brezis and J. M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., 89 (1985), 21-56. doi: 10.1007/BF00281744.

[16]

D. CaoE. Noussair and S. Yang, On the scalar curvature equation $ - \Delta u = \left( {1 + \varepsilon K} \right){u^{\frac{{n + 2}}{{n - 2}}}}\;{\rm{in}}\;{\mathbb{R}^n} $, Calc. Var., 15 (2002), 403-419. doi: 10.1007/s00526-002-0137-1.

[17]

S. Y. Chang and P. Yang, A perturbation result in prescribing scalar curvature on Sn, Duke Math. J., 64 (1991), 27-69. doi: 10.1215/S0012-7094-91-06402-1.

[18]

S. A. ChangM. J. Gursky and P. C. Yang, The scalar curvature equation on 2 and 3 spheres, Calc. Var. Partial Differential Equations, 1 (1993), 205-229. doi: 10.1007/BF01191617.

[19]

X. Chen and X. Xu, The scalar curvature flow on Sn-Perturbation theorem revisited, Inventiones Math., 187 (2012), 395-506. doi: 10.1007/s00222-011-0335-6.

[20]

H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds, Advanced Nonlinear Studies, 3 (2003), 457-470. doi: 10.1515/ans-2003-0404.

[21]

H. ChtiouiR. Ben Mahmoud and D. A. Abuzaid, Conformal transformation of metrics on the n-sphere, Nonlinear Analysis: TMA, 82 (2013), 66-81. doi: 10.1016/j.na.2013.01.003.

[22]

J. M. Coron, Topologie et cas limite del injections de Sobolev, C.R. Acad. Sc. Paris, 299 (1984), 209-212.

[23]

E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc., 20 (1988), 600-602. doi: 10.1112/blms/20.6.600.

[24]

E. Hebey, La methode d'isometrie concentration dans le cas d'un probléme non linéaire sur les varietés compactes á bord avec exposant critique de Sobolev, Bulletin des Sciences Mathématiques, 116 (1992), 35-51.

[25]

M. Ji, Scalar curvature equation on Sn, Part Ⅰ: Topological conditions, J. Diff. Equa., 246 (2009), 749-787. doi: 10.1016/j.jde.2008.04.011.

[26]

Y. Y. Li, Prescribing Scalar Curvature on S3, S4 and Related Problems, Journal of Functional Analysis, 118 (1993), 43-118. doi: 10.1006/jfan.1993.1138.

[27]

Y. Y. Li, Prescribing scalar curvature on $S^{n}$ and related topics, Part Ⅰ, Journal of Differential Equations, 120 (1995), 319-410. doi: 10.1006/jdeq.1995.1115.

[28]

A. Malchiodi, The scalar curvature problem on Sn: An approach via Morse theory, Calc. Var., 14 (2002), 429-445. doi: 10.1007/s005260100110.

[29]

S. Pohozaev, Eigenfunctions of the equation $Δ u + λ f(u) = 0$, Soviet Math. Dokl., 6 (1965), 1408-1411.

[30]

M. Struwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., 187 (1984), 511-517. doi: 10.1007/BF01174186.

[1]

Michela Eleuteri. An existence result for a P.D.E. with hysteresis, convection and a nonlinear boundary condition. Conference Publications, 2007, 2007 (Special) : 344-353. doi: 10.3934/proc.2007.2007.344

[2]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[3]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[4]

Augusto Visintin. P.D.E.s with hysteresis 30 years later. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 793-816. doi: 10.3934/dcdss.2015.8.793

[5]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[6]

Michal Fečkan, Vassilis Rothos. Bifurcations of periodics from homoclinics in singular O.D.E.: applications to discretizations of travelling waves of P.D.E.. Communications on Pure & Applied Analysis, 2002, 1 (4) : 475-483. doi: 10.3934/cpaa.2002.1.475

[7]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[8]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[9]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[10]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[11]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[12]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[13]

Michel Chipot, Aleksandar Mojsic, Prosenjit Roy. On some variational problems set on domains tending to infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3603-3621. doi: 10.3934/dcds.2016.36.3603

[14]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[15]

Francesco Della Pietra, Ireneo Peral. Breaking of resonance for elliptic problems with strong degeneration at infinity. Communications on Pure & Applied Analysis, 2011, 10 (2) : 593-612. doi: 10.3934/cpaa.2011.10.593

[16]

Alain Bensoussan, Miroslav Bulíček, Jens Frehse. Existence and compactness for weak solutions to Bellman systems with critical growth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1729-1750. doi: 10.3934/dcdsb.2012.17.1729

[17]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[18]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 165-176. doi: 10.3934/dcdss.2020009

[19]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[20]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (3)
  • Cited by (1)

Other articles
by authors

[Back to Top]