\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we consider the following nonlinear critical problem: $-Δ u= (1+\varepsilon_0 K_0(x)) u^\frac{n+2}{n-2}$ , $u>0$ in $Ω$ , $u=0$ , on $\partial Ω$ , where $Ω$ is a bounded domain of $\mathbb{R}^n$ , $K_0$ is a given function and $\varepsilon_0$ is a small parameter. Under the assumption that $K_0$ is flat near its critical points, we prove an existence result in terms of the Euler-Hopf index. We believe that it is the very first result in this direction that we do not need any restrictions on the flatness coefficient.

    Mathematics Subject Classification: 35J65, 35J20, 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AmbrosettiJ. Garcia Azorero and I. Peral, Perturbation of $ - \Delta u + {u^{\frac{{\left( {N + 2} \right)}}{{\left( {N - 2} \right)}}}} = 0 $, the Scalar Curvature Problem in $ {\mathbb{R}^N} $ and related topics, Journal of Functional Analysis, 165 (1999), 117-149.  doi: 10.1006/jfan.1999.3390.
    [2] A. Ambrosetti and M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. Henri. Poincaré. ANL, 15 (1998), 233-252.  doi: 10.1016/S0294-1449(97)89300-6.
    [3] A. Ambrosetti and M. Badiale, Variational perturbative methods and bifurcation of bound states from the essential spectrum, Proc. Royal. Soc. Edinburgh., 128 (1998), 1131-1161.  doi: 10.1017/S0308210500027268.
    [4] A. Ambrosetti and A. Malchiodi, A multiplicity result for the Yamabe problem on Sn, Journal of Functional Analysis, 168 (1999), 529-561.  doi: 10.1006/jfan.1999.3458.
    [5] A. Bahri, Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math, Ser, 182 Longman Sci. Tech. Harlow, 1989.
    [6] A. Bahri, An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J., 81 (1996), 323-466.  doi: 10.1215/S0012-7094-96-08116-8.
    [7] A. Bahri and J. M. Coron, The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172.  doi: 10.1016/0022-1236(91)90026-2.
    [8] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain, Comm. Pure Appli. Math., 41 (1988), 255-294.  doi: 10.1002/cpa.3160410302.
    [9] A. Bahri and P. H. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649. 
    [10] M. Ben Ayed and M. Hammami, On a variational problem involving critical Sobolev growth in dimension four, Advances in Differential Equations, 9 (2004), 415-446. 
    [11] R. Ben Mahmoud and H. Chtioui, Existence results for the prescribed scalar curvature on $ {\mathbb{S}^3} $, Annales de l'Institut Fourier, (Grenoble), 61 (2011), 971-986.  doi: 10.5802/aif.2634.
    [12] R. Ben Mahmoud and H. Chtioui, Prescribing the scalar curvature problem on higherdimensional manifolds, Discrete Contin. Dyn. Syst., 32 (2012), 1857-1879.  doi: 10.3934/dcds.2012.32.1857.
    [13] A. Bensouf and H. Chtioui, Conformal metrics with prescribed Q-curvature on Sn, Calc. Var. Partial Differential Equations, 41 (2011), 455-481.  doi: 10.1007/s00526-010-0372-9.
    [14] Z. Bouchech and H. Chtioui, Multiplicity and existence results for a nonlinear elliptic equation with Sobolev exponent, Advanced Nonlinear Studies, 10 (2010), 537-571.  doi: 10.1515/ans-2010-0302.
    [15] H. Brezis and J. M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., 89 (1985), 21-56.  doi: 10.1007/BF00281744.
    [16] D. CaoE. Noussair and S. Yang, On the scalar curvature equation $ - \Delta u = \left( {1 + \varepsilon K} \right){u^{\frac{{n + 2}}{{n - 2}}}}\;{\rm{in}}\;{\mathbb{R}^n} $, Calc. Var., 15 (2002), 403-419.  doi: 10.1007/s00526-002-0137-1.
    [17] S. Y. Chang and P. Yang, A perturbation result in prescribing scalar curvature on Sn, Duke Math. J., 64 (1991), 27-69.  doi: 10.1215/S0012-7094-91-06402-1.
    [18] S. A. ChangM. J. Gursky and P. C. Yang, The scalar curvature equation on 2 and 3 spheres, Calc. Var. Partial Differential Equations, 1 (1993), 205-229.  doi: 10.1007/BF01191617.
    [19] X. Chen and X. Xu, The scalar curvature flow on Sn-Perturbation theorem revisited, Inventiones Math., 187 (2012), 395-506.  doi: 10.1007/s00222-011-0335-6.
    [20] H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds, Advanced Nonlinear Studies, 3 (2003), 457-470.  doi: 10.1515/ans-2003-0404.
    [21] H. ChtiouiR. Ben Mahmoud and D. A. Abuzaid, Conformal transformation of metrics on the n-sphere, Nonlinear Analysis: TMA, 82 (2013), 66-81.  doi: 10.1016/j.na.2013.01.003.
    [22] J. M. Coron, Topologie et cas limite del injections de Sobolev, C.R. Acad. Sc. Paris, 299 (1984), 209-212. 
    [23] E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc., 20 (1988), 600-602.  doi: 10.1112/blms/20.6.600.
    [24] E. Hebey, La methode d'isometrie concentration dans le cas d'un probléme non linéaire sur les varietés compactes á bord avec exposant critique de Sobolev, Bulletin des Sciences Mathématiques, 116 (1992), 35-51. 
    [25] M. Ji, Scalar curvature equation on Sn, Part Ⅰ: Topological conditions, J. Diff. Equa., 246 (2009), 749-787.  doi: 10.1016/j.jde.2008.04.011.
    [26] Y. Y. Li, Prescribing Scalar Curvature on S3, S4 and Related Problems, Journal of Functional Analysis, 118 (1993), 43-118.  doi: 10.1006/jfan.1993.1138.
    [27] Y. Y. Li, Prescribing scalar curvature on $S^{n}$ and related topics, Part Ⅰ, Journal of Differential Equations, 120 (1995), 319-410.  doi: 10.1006/jdeq.1995.1115.
    [28] A. Malchiodi, The scalar curvature problem on Sn: An approach via Morse theory, Calc. Var., 14 (2002), 429-445.  doi: 10.1007/s005260100110.
    [29] S. Pohozaev, Eigenfunctions of the equation $Δ u + λ f(u) = 0$, Soviet Math. Dokl., 6 (1965), 1408-1411. 
    [30] M. Struwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.
  • 加载中
SHARE

Article Metrics

HTML views(895) PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return