We study the following minimization problem:
${d_{{a_q}}}(q): = \mathop {\inf }\limits_{\{ \int {_{{\mathbb{R}^2}}|u{|^2}dx = 1} \} } {E_{q,{a_q}}}(u),$
where the functional
${{E}_{q,{{a}_{q}}}}(u):=\int_{{{\mathbb{R}}^{2}}}{(|\nabla u(x){{|}^{2}}+V(x)|u(x){{|}^{2}})}dx-\frac{2{{a}_{q}}}{q+2}\int_{{{\mathbb{R}}^{2}}}{|}u(x){{|}^{q+2}}dx.$
Here
Citation: |
[1] |
W. Z. Bao and Y. Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2003), 1-135.
doi: 10.3934/krm.2013.6.1.![]() ![]() ![]() |
[2] |
T. Bartsch amd Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149.![]() ![]() ![]() |
[3] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[4] |
J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.
doi: 10.1007/s00205-002-0225-6.![]() ![]() ![]() |
[5] |
T. Cazenave,
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics Vol. 10 Courant Institute of Mathematical Science/AMS, New York, 2003.
![]() |
[6] |
M. del Pino, M. Kowalczyk and J. C. Wei, Concentration on curves for nonlinear schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.
doi: 10.1002/cpa.20135.![]() ![]() ![]() |
[7] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud. vol. 7, Academic Press, New York, (1981), 369–402.
![]() ![]() |
[8] |
Y. J. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.
doi: 10.1007/s11005-013-0667-9.![]() ![]() ![]() |
[9] |
Y. J. Guo, Z. -Q. Wang, X. Y. Zeng and H. S. Zhou, Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials, arXiv: 1502.01839.
![]() |
[10] |
Y. J. Guo, X. Y. Zeng and H. S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations., 2014 (256), 2079-2100.
doi: 10.1016/j.jde.2013.12.012.![]() ![]() ![]() |
[11] |
Y. J. Guo, X. Y. Zeng and H. S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. I. H. Poincaré-AN, 33 (2016), 809-828.
doi: 10.1016/j.anihpc.2015.01.005.![]() ![]() ![]() |
[12] |
Q. Han and F. H. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics Vol. 1 2$^{nd}$ edition, Courant Institute of Mathematical Science/AMS, New York, 2011.
![]() ![]() |
[13] |
M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p=0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502.![]() ![]() ![]() |
[14] |
Y. Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Comm. Partial Differential Equations, 18 (1993), 1043-1054.
doi: 10.1080/03605309308820960.![]() ![]() ![]() |
[15] |
E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,
Phys. Rev. A 61 (2000), 043602-1-13.
![]() |
[16] |
P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 109-145.
![]() ![]() |
[17] |
P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283.
![]() ![]() |
[18] |
G. Z. Lu and J. C. Wei, On nonlinear schrödinger equations with totally degenerate potentials, C. R. Acad. Sci. Paris., 326 (1998), 691-696.
doi: 10.1016/S0764-4442(98)80032-3.![]() ![]() ![]() |
[19] |
M. Maeda, On the symmetry of the ground states of nonlinear Schrödinger equation with potential, Adv. Nonlinear Stud., 10 (2010), 895-925.
doi: 10.1515/ans-2010-0409.![]() ![]() ![]() |
[20] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅳ. Analysis of Operators Academic Press, New York-London, 1978.
![]() ![]() |
[21] |
H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, 30 (1988), 207-218.
doi: 10.1016/0167-2789(88)90107-8.![]() ![]() ![]() |
[22] |
R. Seiringer, Hot topics in cold gases, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, (2010), 231-245.
doi: 10.1142/9789814304634_0013.![]() ![]() ![]() |
[23] |
C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc., 45 (1982), 169-192.
doi: 10.1112/plms/s3-45.1.169.![]() ![]() ![]() |
[24] |
C. A. Stuart, Bifurcation from the essential spectrum, Springer, Berlin, 45 (1983), 169-192.
doi: 10.1007/BFb0103282.![]() ![]() ![]() |
[25] |
C. A. Stuart, Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Methods Applied Sci., 11 (1989), 525-542.
doi: 10.1002/mma.1670110408.![]() ![]() ![]() |
[26] |
X. F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
doi: 10.1007/BF02096642.![]() ![]() ![]() |
[27] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1983), 567-576.
![]() ![]() |