March  2017, 37(3): 1763-1787. doi: 10.3934/dcds.2017074

Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027, Zhejiang, China

2. 

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei, China

* Corresponding author

Received  April 2016 Revised  October 2016 Published  December 2016

Fund Project: The first author is supported by NSFC (No. 11501330, No. 11425105) and CPSF (Grant No. 2015M582071). The second author is supported by the Fundamental Research Funds for the Central Universities (Grant No. N142303010).

We study the Robe's restricted three-body problem. Such a motion was firstly studied by A. G. Robe in [13], which is used to model small oscillations of the earth's inner core taking into account the moon's attraction. Earlier results for the linear stability of the elliptic equilibrium point in Robe's restricted problem depend on a lot of numerical computations, while we give an analytic approach to it. The linearized Hamiltonian system near the elliptic equilibrium point in our problem coincides with the linearized system near the Euler elliptic relative equilibria in the classical three-body problem except for the range of the mass parameter. We first establish some relations of the linear stability problem to the properties of some symplectic paths and some corresponding linear operators. Then using the Maslov-type $ω$-index theory of symplectic paths and the theory of linear operators, we compute $ω$-indices and obtain certain properties of the linear stability of the elliptic equilibrium point of Robe's restricted three-body problem.

Citation: Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074
References:
[1]

W. BallmannG. Thorbergsson and W. Ziller, Closed geodesics on positively curved manifolds, Ann. of Math., 116 (1982), 213-247.  doi: 10.2307/2007062.

[2]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[3]

P. P. Hallen and D. N. Rana, The Existence and stability of equilibrium points in the Robe's restricted three-body problem, Celest. Mech. Dyn. Astr., 79 (2001), 145-155.  doi: 10.1023/A:1011173320720.

[4]

X. HuY. Long and S. Sun, Linear stability of elliptic Lagrangian solutions of the classical planar three-body problem via index theory, Arch. Rational. Mech. Anal., 213 (2014), 993-1045.  doi: 10.1007/s00205-014-0749-6.

[5]

X. Hu and Y. Ou, Collision index and stability of elliptic relative equilibria in planar $n$-body problem, Commun. Math. Phys., 348 (2016), 803-845.  doi: 10.1007/s00220-016-2695-7.

[6]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.  doi: 10.1007/s00220-009-0860-y.

[7]

X. Hu and S. Sun, Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem, Adv. Math., 223 (2010), 98-119.  doi: 10.1016/j.aim.2009.07.017.

[8]

Y. Long, The structure of the singular symplectic matrix set, Sci. China. Ser. A. (English Ed.), 34 (1991), 897-907. 

[9]

Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.  doi: 10.2140/pjm.1999.187.113.

[10]

Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Adv. Math., 154 (2000), 76-131.  doi: 10.1006/aima.2000.1914.

[11]

Y. Long, Index Theory for Symplectic Paths with Applications Progress in Math. 207, Birkhäuser, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.

[12]

A. R. Plastino and A. Plastino, Robe's restricted three-body problem revisited, Celest. Mech. Dyn. Astr., 61 (1995), 197-206.  doi: 10.1007/BF00048515.

[13]

H. A. G. Robe, A new kind of three-body problem, Celest. Mech., 16 (1977), 343-351.  doi: 10.1007/BF01232659.

[14]

A. K. Shrivastava and D. Garain, Effect of perturbation on the location of liberation point in the Robe restricted problem of three bodies, Celest. Mech., 51 (1991), 67-73.  doi: 10.1007/BF02426670.

[15]

K. T. SinghB. S. Kushvah and B. Ishwar, Stability of triangular equilibrium points in Robe's generalised restricted three body problem, in Celestial Mechanics: Recent Trends (eds. B.Ishwar), Narosa Publishing House Pvt. Ltd., New Delhi, India, (2006), 65-70. 

[16]

Q. Zhou and Y. Long, Equivalence of linear stabilities of elliptic triangle solutions of the planar charged and classical three-body problems, J. Diff. Equa., 258 (2015), 3851-3879.  doi: 10.1016/j.jde.2015.01.045.

[17]

Q. Zhou and Y. Long, Maslov-type indices and linear stability of elliptic Euler solutions of the three-body problem, preprint, arXiv: 1510.06822.

[18]

Q. Zhou and Y. Long, The reduction on the linear stability of elliptic Euler-Moulton solutions of the $n$-body problem to those of $3$-body problems, Celest. Mech. Dyn. Astr., (2016), 1-32.  doi: 10.1007/s10569-016-9732-x.

show all references

References:
[1]

W. BallmannG. Thorbergsson and W. Ziller, Closed geodesics on positively curved manifolds, Ann. of Math., 116 (1982), 213-247.  doi: 10.2307/2007062.

[2]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[3]

P. P. Hallen and D. N. Rana, The Existence and stability of equilibrium points in the Robe's restricted three-body problem, Celest. Mech. Dyn. Astr., 79 (2001), 145-155.  doi: 10.1023/A:1011173320720.

[4]

X. HuY. Long and S. Sun, Linear stability of elliptic Lagrangian solutions of the classical planar three-body problem via index theory, Arch. Rational. Mech. Anal., 213 (2014), 993-1045.  doi: 10.1007/s00205-014-0749-6.

[5]

X. Hu and Y. Ou, Collision index and stability of elliptic relative equilibria in planar $n$-body problem, Commun. Math. Phys., 348 (2016), 803-845.  doi: 10.1007/s00220-016-2695-7.

[6]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.  doi: 10.1007/s00220-009-0860-y.

[7]

X. Hu and S. Sun, Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem, Adv. Math., 223 (2010), 98-119.  doi: 10.1016/j.aim.2009.07.017.

[8]

Y. Long, The structure of the singular symplectic matrix set, Sci. China. Ser. A. (English Ed.), 34 (1991), 897-907. 

[9]

Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.  doi: 10.2140/pjm.1999.187.113.

[10]

Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Adv. Math., 154 (2000), 76-131.  doi: 10.1006/aima.2000.1914.

[11]

Y. Long, Index Theory for Symplectic Paths with Applications Progress in Math. 207, Birkhäuser, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.

[12]

A. R. Plastino and A. Plastino, Robe's restricted three-body problem revisited, Celest. Mech. Dyn. Astr., 61 (1995), 197-206.  doi: 10.1007/BF00048515.

[13]

H. A. G. Robe, A new kind of three-body problem, Celest. Mech., 16 (1977), 343-351.  doi: 10.1007/BF01232659.

[14]

A. K. Shrivastava and D. Garain, Effect of perturbation on the location of liberation point in the Robe restricted problem of three bodies, Celest. Mech., 51 (1991), 67-73.  doi: 10.1007/BF02426670.

[15]

K. T. SinghB. S. Kushvah and B. Ishwar, Stability of triangular equilibrium points in Robe's generalised restricted three body problem, in Celestial Mechanics: Recent Trends (eds. B.Ishwar), Narosa Publishing House Pvt. Ltd., New Delhi, India, (2006), 65-70. 

[16]

Q. Zhou and Y. Long, Equivalence of linear stabilities of elliptic triangle solutions of the planar charged and classical three-body problems, J. Diff. Equa., 258 (2015), 3851-3879.  doi: 10.1016/j.jde.2015.01.045.

[17]

Q. Zhou and Y. Long, Maslov-type indices and linear stability of elliptic Euler solutions of the three-body problem, preprint, arXiv: 1510.06822.

[18]

Q. Zhou and Y. Long, The reduction on the linear stability of elliptic Euler-Moulton solutions of the $n$-body problem to those of $3$-body problems, Celest. Mech. Dyn. Astr., (2016), 1-32.  doi: 10.1007/s10569-016-9732-x.

Figure 1.  The Robe's restricted three-body problem considered: $m_1$ is a spherical shell filled with a fluid of density $\rho_1$; $m_2$ a mass point outside the shell and $m_3$ a small solid sphere of density $\rho_3$ inside the shell.
Figure 2.  Stability bifurcation diagram of elliptic equilibrium point of the Robe's restricted three-body problem in the $(\mu,e)$ rectangle $[0,1]\times [0,1)$.
[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044

[3]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[4]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[5]

Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057

[6]

Peili Li, Xiliang Lu, Yunhai Xiao. Smoothing Newton method for $ \ell^0 $-$ \ell^2 $ regularized linear inverse problem. Inverse Problems and Imaging, 2022, 16 (1) : 153-177. doi: 10.3934/ipi.2021044

[7]

Holger R. Dullin, Jürgen Scheurle. Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 377-394. doi: 10.3934/jgm.2020011

[8]

Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229

[9]

Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted three-body models for the Trojan motion. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 843-854. doi: 10.3934/dcds.2004.11.843

[10]

Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094

[11]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[12]

Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2579-2598. doi: 10.3934/jimo.2021082

[13]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[14]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[15]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[16]

Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3989-4018. doi: 10.3934/dcds.2017169

[17]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[18]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[19]

Tian-Xiao He, Peter J.-S. Shiue. Identities for linear recursive sequences of order $ 2 $. Electronic Research Archive, 2021, 29 (5) : 3489-3507. doi: 10.3934/era.2021049

[20]

Liu Liu, Justyna Jarczyk, Witold Jarczyk, Weinian Zhang. Iterative roots of type $ \mathcal {T}_2 $. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022082

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (188)
  • HTML views (57)
  • Cited by (1)

Other articles
by authors

[Back to Top]