April  2017, 37(4): 1789-1818. doi: 10.3934/dcds.2017075

On a resonant mean field type equation: A "critical point at Infinity" approach

1. 

Mathematisches Institut der Justus-Liebig-Universität Giessen, Arndtsrasse 2, D-35392 Giessen, Germany

2. 

Université de Sfax, Faculté des Sciences, Département de Mathématiques, Route de Soukra, Sfax, Tunisia

3. 

The City University of New York, CSI, Mathematics Department, 2800 Victory Boulevard, Staten Island New York 10314, USA

* Corresponding author: Mohameden.Ahmedou@math.uni-giessen.de.

Received  February 2016 Revised  November 2016 Published  December 2016

Fund Project: This work was partially supported by a grant from the Simons Foundation (Nr. 210368 to Marcello Lucia) and the grant MTM2014-52402-C3-1-P (Spain).

We consider the following mean field type equations on domains of
$\mathbb R^2$
under Dirichlet boundary conditions:
$\left\{ \begin{array}{l} - \Delta u = \varrho \frac{{K {e^u}}}{{\int_\Omega {K {e^u}} }}\;\;\;\;\;{\rm{in}}\;\Omega ,\\\;\;\;\;u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{on}}\;\partial \Omega ,\end{array} \right.$
where
$K$
is a smooth positive function and
$\varrho$
is a positive real parameter.
A "critical point theory at Infinity" approach of A. Bahri to the above problem is developed for the resonant case, i.e. when the parameter
$\varrho$
is a multiple of
$8 π$
. Namely, we identify the so-called "critical points at infinity" of the associated variational problem and compute their Morse indices. We then prove some Bahri-Coron type results which can be seen as a generalization of a degree formula in the non-resonant case due to C.C.Chen and C.S.[18].
Citation: Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075
References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182. Longman Scientific Technical, Harlow; copublished in the United States with John Wiley Sons, Inc. , New York, 1989.  Google Scholar

[3]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math, 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[4]

A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172.  doi: 10.1016/0022-1236(91)90026-2.  Google Scholar

[5]

A. Bahri and P. Rabinowitz, Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.   Google Scholar

[6]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension. A celebration of John F. Nash, Jr, Duke Math. J., 81 (1996), 323-466.  doi: 10.1215/S0012-7094-96-08116-8.  Google Scholar

[7]

D. Bartolucci and C. S. Lin, Existence and Uniqueness of mean field equation on multiply connected domains at the critical parameter, Math. Ann., 359 (2014), 1-44.  doi: 10.1007/s00208-013-0990-6.  Google Scholar

[8]

D. Bartolucci and F. De Marchis, Supercritical mean field equations on convex domains and the Onsager's statistical description of two dimensional turbulence, Arch. Ration. Mech. Anal., 217 (2015), 525-570.  doi: 10.1007/s00205-014-0836-8.  Google Scholar

[9]

M. Ben AyedY. ChenH. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., 84 (1996), 633-677.  doi: 10.1215/S0012-7094-96-08420-3.  Google Scholar

[10]

M. Ben Ayed and M. Ould Ahmedou, Existence and multiplicity results for a fourth order mean field equation, J. Funct. Anal., 258 (2010), 3165-3194.  doi: 10.1016/j.jfa.2010.01.009.  Google Scholar

[11]

H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of ions of −Δu = V (x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[12]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.  doi: 10.1007/BF02099262.  Google Scholar

[13]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Part Ⅱ, Comm. Math. Phys., 174 (1995), 229-260.  doi: 10.1007/BF02099602.  Google Scholar

[14]

A. Chang and P. Yang, Prescribing Gaussian curvature on $\mathbb{S}^2$, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[15]

A. Chang and P. Yang, Conformal deformations of metrics on $\mathbb{S}^2$, J. Diff. Geom., 27 (1988), 259-296.   Google Scholar

[16]

A. ChangC. C. Chen and C. S. Lin, Extremal function of a mean field equation in two dimension, in Lectures on Partial Differential Equations, New Stud. Adv. Math, 2 (2003), 61-93.   Google Scholar

[17]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728-771.  doi: 10.1002/cpa.3014.  Google Scholar

[18]

C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.  doi: 10.1002/cpa.10107.  Google Scholar

[19]

F. De Marchis, Multiplicity result for a scalar field equation on compact surfaces, Comm. PDE, 33 (2008), 2208-2224.  doi: 10.1080/03605300802523446.  Google Scholar

[20]

F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.  doi: 10.1016/j.jfa.2010.07.003.  Google Scholar

[21]

F. De Marchis, Multiplicity of solutions for a mean field equation on compact surfaces, Boll. Unione Mat. Ital., 4 (2011), 245-257.   Google Scholar

[22]

W. DingJ. JostJ. Li and G. Wang, Existence results for mean field equations, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 16 (1999), 653-666.  doi: 10.1016/S0294-1449(99)80031-6.  Google Scholar

[23]

Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genus, Commun. Contemp. Math., 10 (2008), 205-220.  doi: 10.1142/S0219199708002776.  Google Scholar

[24]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858.  doi: 10.4007/annals.2008.168.813.  Google Scholar

[25]

P. EspositoM. Grossi and A. Pistoia, On the existence of blowing up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Lineéaire, 22 (2005), 227-257.  doi: 10.1016/j.anihpc.2004.12.001.  Google Scholar

[26]

Z. C. Han, Prescribing Gaussian curvature on S2, Duke Math. J., 61 (1990), 679-703.  doi: 10.1215/S0012-7094-90-06125-3.  Google Scholar

[27]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Poincaré Anal. non linéaire, 8 (1991), 159-174.   Google Scholar

[28]

M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., 46 (1993), 27-56.  doi: 10.1002/cpa.3160460103.  Google Scholar

[29]

Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of $-Δ u=Ve^{u}$ in dimension two, Indiana Univ. Math. J., 43 (1994), 1255-1270.  doi: 10.1512/iumj.1994.43.43054.  Google Scholar

[30]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.  doi: 10.1007/s002200050536.  Google Scholar

[31]

M. Lucia, A deformation Lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138.   Google Scholar

[32]

A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, Adv. Differential Equations, 13 (2008), 1109-1129.   Google Scholar

[33]

A. Malchiodi, Topological Methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008), 277-294.  doi: 10.3934/dcds.2008.21.277.  Google Scholar

[34] J. Milnor, Lectures on the H-Cobordism Theorem, Princeton University Press, Princeton, 1965.   Google Scholar
[35] R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press, 1994.   Google Scholar
[36]

M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione. Math. Ital. Sez. B Artic. Ric. Mat.(8), 1 (1998), 109-121.   Google Scholar

[37]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytic Approach, Progress in Nonlinear differential equations, 72, Birkhäuser Boston, Inc. Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[38]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer monographs in Mathematics, Springer Verlag, New York, Inc, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[39]

L. Zhang, Blow up solutions of some nonlinear elliptic equation involving exponential nonlinearities, Com. Math. Phys., 268 (2006), 105-133.  doi: 10.1007/s00220-006-0092-3.  Google Scholar

show all references

References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182. Longman Scientific Technical, Harlow; copublished in the United States with John Wiley Sons, Inc. , New York, 1989.  Google Scholar

[3]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math, 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[4]

A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172.  doi: 10.1016/0022-1236(91)90026-2.  Google Scholar

[5]

A. Bahri and P. Rabinowitz, Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.   Google Scholar

[6]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension. A celebration of John F. Nash, Jr, Duke Math. J., 81 (1996), 323-466.  doi: 10.1215/S0012-7094-96-08116-8.  Google Scholar

[7]

D. Bartolucci and C. S. Lin, Existence and Uniqueness of mean field equation on multiply connected domains at the critical parameter, Math. Ann., 359 (2014), 1-44.  doi: 10.1007/s00208-013-0990-6.  Google Scholar

[8]

D. Bartolucci and F. De Marchis, Supercritical mean field equations on convex domains and the Onsager's statistical description of two dimensional turbulence, Arch. Ration. Mech. Anal., 217 (2015), 525-570.  doi: 10.1007/s00205-014-0836-8.  Google Scholar

[9]

M. Ben AyedY. ChenH. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., 84 (1996), 633-677.  doi: 10.1215/S0012-7094-96-08420-3.  Google Scholar

[10]

M. Ben Ayed and M. Ould Ahmedou, Existence and multiplicity results for a fourth order mean field equation, J. Funct. Anal., 258 (2010), 3165-3194.  doi: 10.1016/j.jfa.2010.01.009.  Google Scholar

[11]

H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of ions of −Δu = V (x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[12]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.  doi: 10.1007/BF02099262.  Google Scholar

[13]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Part Ⅱ, Comm. Math. Phys., 174 (1995), 229-260.  doi: 10.1007/BF02099602.  Google Scholar

[14]

A. Chang and P. Yang, Prescribing Gaussian curvature on $\mathbb{S}^2$, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[15]

A. Chang and P. Yang, Conformal deformations of metrics on $\mathbb{S}^2$, J. Diff. Geom., 27 (1988), 259-296.   Google Scholar

[16]

A. ChangC. C. Chen and C. S. Lin, Extremal function of a mean field equation in two dimension, in Lectures on Partial Differential Equations, New Stud. Adv. Math, 2 (2003), 61-93.   Google Scholar

[17]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728-771.  doi: 10.1002/cpa.3014.  Google Scholar

[18]

C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.  doi: 10.1002/cpa.10107.  Google Scholar

[19]

F. De Marchis, Multiplicity result for a scalar field equation on compact surfaces, Comm. PDE, 33 (2008), 2208-2224.  doi: 10.1080/03605300802523446.  Google Scholar

[20]

F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.  doi: 10.1016/j.jfa.2010.07.003.  Google Scholar

[21]

F. De Marchis, Multiplicity of solutions for a mean field equation on compact surfaces, Boll. Unione Mat. Ital., 4 (2011), 245-257.   Google Scholar

[22]

W. DingJ. JostJ. Li and G. Wang, Existence results for mean field equations, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 16 (1999), 653-666.  doi: 10.1016/S0294-1449(99)80031-6.  Google Scholar

[23]

Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genus, Commun. Contemp. Math., 10 (2008), 205-220.  doi: 10.1142/S0219199708002776.  Google Scholar

[24]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858.  doi: 10.4007/annals.2008.168.813.  Google Scholar

[25]

P. EspositoM. Grossi and A. Pistoia, On the existence of blowing up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Lineéaire, 22 (2005), 227-257.  doi: 10.1016/j.anihpc.2004.12.001.  Google Scholar

[26]

Z. C. Han, Prescribing Gaussian curvature on S2, Duke Math. J., 61 (1990), 679-703.  doi: 10.1215/S0012-7094-90-06125-3.  Google Scholar

[27]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Poincaré Anal. non linéaire, 8 (1991), 159-174.   Google Scholar

[28]

M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., 46 (1993), 27-56.  doi: 10.1002/cpa.3160460103.  Google Scholar

[29]

Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of $-Δ u=Ve^{u}$ in dimension two, Indiana Univ. Math. J., 43 (1994), 1255-1270.  doi: 10.1512/iumj.1994.43.43054.  Google Scholar

[30]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.  doi: 10.1007/s002200050536.  Google Scholar

[31]

M. Lucia, A deformation Lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138.   Google Scholar

[32]

A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, Adv. Differential Equations, 13 (2008), 1109-1129.   Google Scholar

[33]

A. Malchiodi, Topological Methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008), 277-294.  doi: 10.3934/dcds.2008.21.277.  Google Scholar

[34] J. Milnor, Lectures on the H-Cobordism Theorem, Princeton University Press, Princeton, 1965.   Google Scholar
[35] R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press, 1994.   Google Scholar
[36]

M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione. Math. Ital. Sez. B Artic. Ric. Mat.(8), 1 (1998), 109-121.   Google Scholar

[37]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytic Approach, Progress in Nonlinear differential equations, 72, Birkhäuser Boston, Inc. Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[38]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer monographs in Mathematics, Springer Verlag, New York, Inc, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[39]

L. Zhang, Blow up solutions of some nonlinear elliptic equation involving exponential nonlinearities, Com. Math. Phys., 268 (2006), 105-133.  doi: 10.1007/s00220-006-0092-3.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[2]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[3]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[4]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[5]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[6]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[7]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[8]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[9]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[10]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[13]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[14]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[15]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[16]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[17]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[18]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (74)
  • HTML views (64)
  • Cited by (0)

[Back to Top]