-
Previous Article
Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity
- DCDS Home
- This Issue
-
Next Article
The stochastic value function in metric measure spaces
Local criteria for blowup in two-dimensional chemotaxis models
1. | Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland |
2. | Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, 00-956 Warsaw, Poland |
We consider two-dimensional versions of the Keller-Segel model for the chemotaxis with either classical (Brownian) or fractional (anomalous) diffusion. Criteria for blowup of solutions in terms of suitable Morrey spaces norms are derived. Moreover, the impact of the consumption term on the global-in-time existence of solutions is analyzed for the classical Keller-Segel system.
References:
[1] |
P. Biler,
The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math., 114 (1995), 181-205.
|
[2] |
P. Biler, I. Guerra and G. Karch,
Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane, Comm. Pure Appl. Analysis, 14 (2015), 2117-2126.
doi: 10.3934/cpaa.2015.14.2117. |
[3] |
P. Biler and G. Karch,
Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262.
doi: 10.1007/s00028-009-0048-0. |
[4] |
P. Biler, G. Karch and P. Laurençot,
Blowup of solutions to adiffusive aggregation model, Nonlinearity, 22 (2009), 1559-1568.
doi: 10.1088/0951-7715/22/7/003. |
[5] |
P. Biler, G. Karch and J. Zienkiewicz,
Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems, Nonlinearity, 28 (2015), 4369-4387.
doi: 10.1088/0951-7715/28/12/4369. |
[6] |
P. Biler and W. A. Woyczyński,
Global and exploding solutions of nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869.
doi: 10.1137/S0036139996313447. |
[7] |
P. Biler and J. Zienkiewicz,
Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data, Bull. Polish Acad. Sci. Mathematics, 63 (2015), 41-51.
doi: 10.4064/ba63-1-6. |
[8] |
P. Biler, J. Dolbeault and B. Perthame,
Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp.
|
[9] |
Y. Giga, T. Miyakawa and H. Osada,
Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104 (1988), 223-250.
doi: 10.1007/BF00281355. |
[10] |
G. Karch and K. Suzuki,
Blow-up versus global existence of solutions to aggregation equations, Appl. Math. (Warsaw), 38 (2011), 243-258.
doi: 10.4064/am38-3-1. |
[11] |
H. Kozono and Y. Sugiyama,
Local existence and finite time blow-up of solutions in the 2-D
Keller-Segel system, J. Evol. Equ., 8 (2008), 353-378.
doi: 10.1007/s00028-008-0375-6. |
[12] |
M. Kurokiba and T. Ogawa,
Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differ. Integral Equ., 16 (2003), 427-452.
|
[13] |
P.-G. Lemarié-Rieusset,
Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Diff. Eq., 18 (2013), 1189-1208.
|
[14] |
D. Li and J. L. Rodrigo,
Finite-time singularities of an aggregation equation in $\mathbb{R}^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703.
doi: 10.1007/s00220-008-0669-0. |
[15] |
D. Li and J. L. Rodrigo,
Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. Math., 220 (2009), 1717-1738.
doi: 10.1016/j.aim.2008.10.016. |
[16] |
D. Li, J. L. Rodrigo and X. Zhang,
Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26 (2010), 295-332.
doi: 10.4171/RMI/602. |
[17] |
T. Nagai,
Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc., 37 (2000), 721-733.
|
[18] |
T. Nagai,
Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Ineq. Appl., 6 (2001), 37-55.
doi: 10.1155/S1025583401000042. |
[19] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N. J. , 1970. |
[20] |
Y. Sugiyama, M. Yamamoto and K. Kato,
Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space, J. Diff. Eq., 258 (2015), 2983-3010.
doi: 10.1016/j.jde.2014.12.033. |
show all references
References:
[1] |
P. Biler,
The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math., 114 (1995), 181-205.
|
[2] |
P. Biler, I. Guerra and G. Karch,
Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane, Comm. Pure Appl. Analysis, 14 (2015), 2117-2126.
doi: 10.3934/cpaa.2015.14.2117. |
[3] |
P. Biler and G. Karch,
Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262.
doi: 10.1007/s00028-009-0048-0. |
[4] |
P. Biler, G. Karch and P. Laurençot,
Blowup of solutions to adiffusive aggregation model, Nonlinearity, 22 (2009), 1559-1568.
doi: 10.1088/0951-7715/22/7/003. |
[5] |
P. Biler, G. Karch and J. Zienkiewicz,
Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems, Nonlinearity, 28 (2015), 4369-4387.
doi: 10.1088/0951-7715/28/12/4369. |
[6] |
P. Biler and W. A. Woyczyński,
Global and exploding solutions of nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869.
doi: 10.1137/S0036139996313447. |
[7] |
P. Biler and J. Zienkiewicz,
Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data, Bull. Polish Acad. Sci. Mathematics, 63 (2015), 41-51.
doi: 10.4064/ba63-1-6. |
[8] |
P. Biler, J. Dolbeault and B. Perthame,
Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp.
|
[9] |
Y. Giga, T. Miyakawa and H. Osada,
Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104 (1988), 223-250.
doi: 10.1007/BF00281355. |
[10] |
G. Karch and K. Suzuki,
Blow-up versus global existence of solutions to aggregation equations, Appl. Math. (Warsaw), 38 (2011), 243-258.
doi: 10.4064/am38-3-1. |
[11] |
H. Kozono and Y. Sugiyama,
Local existence and finite time blow-up of solutions in the 2-D
Keller-Segel system, J. Evol. Equ., 8 (2008), 353-378.
doi: 10.1007/s00028-008-0375-6. |
[12] |
M. Kurokiba and T. Ogawa,
Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differ. Integral Equ., 16 (2003), 427-452.
|
[13] |
P.-G. Lemarié-Rieusset,
Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Diff. Eq., 18 (2013), 1189-1208.
|
[14] |
D. Li and J. L. Rodrigo,
Finite-time singularities of an aggregation equation in $\mathbb{R}^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703.
doi: 10.1007/s00220-008-0669-0. |
[15] |
D. Li and J. L. Rodrigo,
Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. Math., 220 (2009), 1717-1738.
doi: 10.1016/j.aim.2008.10.016. |
[16] |
D. Li, J. L. Rodrigo and X. Zhang,
Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26 (2010), 295-332.
doi: 10.4171/RMI/602. |
[17] |
T. Nagai,
Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc., 37 (2000), 721-733.
|
[18] |
T. Nagai,
Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Ineq. Appl., 6 (2001), 37-55.
doi: 10.1155/S1025583401000042. |
[19] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N. J. , 1970. |
[20] |
Y. Sugiyama, M. Yamamoto and K. Kato,
Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space, J. Diff. Eq., 258 (2015), 2983-3010.
doi: 10.1016/j.jde.2014.12.033. |
[1] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[2] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[3] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[4] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[5] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[6] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[7] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[8] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[9] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[10] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[11] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[12] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[13] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[14] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[15] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[16] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[17] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[18] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
[19] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[20] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]