-
Previous Article
An existence proof of a symmetric periodic orbit in the octahedral six-body problem
- DCDS Home
- This Issue
-
Next Article
Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity
Quasi-periodic solutions for perturbed generalized nonlinear vibrating string equation with singularities
School of Mathematical Sciences, Fudan University, Shanghai 200433, China |
The existence of 2-dimensional KAM tori is proved for the perturbed generalized nonlinear vibrating string equation with singularities $u_{tt}=((1-x^2)u_x)_x-mu-u^3$ subject to certain boundary conditions by means of infinite-dimensional KAM theory with the help of partial Birkhoff normal form, the characterization of the singular function space and the estimate of the integrals related to Legendre basis.
References:
[1] |
M. Berti and M. Procesi,
Quasi-periodic solutions of completely resonant forced wave equations, Comm. Partial Differential Equations, 31 (2006), 959-985.
doi: 10.1080/03605300500358129. |
[2] |
J. Bourgain,
Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Int. Math. Res. Not., 1994 (1994), 475-497.
doi: 10.1155/S1073792894000516. |
[3] |
M. Gao and J. Liu,
Quasi-periodic solutions for 1D wave equation with higher order nonlinearity, J. Differential Equations, 252 (2012), 1466-1493.
doi: 10.1016/j.jde.2011.10.006. |
[4] |
B. Grébert and L. Thomann,
KAM for the quantum harmonic oscillator, Comm. Math. Phys., 307 (2011), 383-427.
doi: 10.1007/s00220-011-1327-5. |
[5] |
D. B. Henry, How to remember the Sobolev inequalities, Differential Equations, Springer Berlin Heidelberg, 957 (1982), 97-109. |
[6] |
H. Y. Hsu,
Certain integrals and infinite series involving ultra-spherical polynomials and Bessel functions, Duke Math. J., 4 (1938), 374-383.
doi: 10.1215/S0012-7094-38-00429-6. |
[7] |
S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Springer-Verlag, 1963.
doi: 10.1007/BFb0092243.![]() ![]() ![]() |
[8] |
S. B. Kuksin,
Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, (Russian) Funktsional. Anal. i Prilozhen., 21 (1987), 22-37.
|
[9] |
S. B. Kuksin,
Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Math. USSR Izv., 32 (1989), 39-62.
|
[10] |
S. B. Kuksin and J. Pöschel,
Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation, Anal. of Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[11] |
L. Nirenberg,
An extended interpolation inequality, Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 20 (1966), 733-737.
|
[12] |
L. Nirenberg,
On elliptic partial differential equations, IL Principio Di Minimo E Sue Applicazioni Alle Equazioni Funzionali, 17 (2011), 1-48.
doi: 10.1007/978-3-642-10926-3_1. |
[13] |
J. Pöschel,
Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.
doi: 10.1007/BF02566420. |
[14] |
J. Pöschel,
A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Super. Pisa, 23 (2006), 119-148.
|
[15] |
C. E. Wayne,
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.
doi: 10.1007/BF02104499. |
[16] |
X. Yuan,
Invariant manifold of hyperbolic-elliptic type for nonlinear wave equation, Int. J. Math. Math. Sci., 2003 (2003), 1111-1136.
doi: 10.1155/S0161171203207092. |
[17] |
X. Yuan,
Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations, 230 (2006), 213-274.
doi: 10.1016/j.jde.2005.12.012. |
[18] |
X. Yuan,
Invatiant tori of nonlinear wave equations with a given potential, Discrete Contin. Dyn. Syst., 16 (2006), 615-634.
doi: 10.3934/dcds.2006.16.615. |
show all references
References:
[1] |
M. Berti and M. Procesi,
Quasi-periodic solutions of completely resonant forced wave equations, Comm. Partial Differential Equations, 31 (2006), 959-985.
doi: 10.1080/03605300500358129. |
[2] |
J. Bourgain,
Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Int. Math. Res. Not., 1994 (1994), 475-497.
doi: 10.1155/S1073792894000516. |
[3] |
M. Gao and J. Liu,
Quasi-periodic solutions for 1D wave equation with higher order nonlinearity, J. Differential Equations, 252 (2012), 1466-1493.
doi: 10.1016/j.jde.2011.10.006. |
[4] |
B. Grébert and L. Thomann,
KAM for the quantum harmonic oscillator, Comm. Math. Phys., 307 (2011), 383-427.
doi: 10.1007/s00220-011-1327-5. |
[5] |
D. B. Henry, How to remember the Sobolev inequalities, Differential Equations, Springer Berlin Heidelberg, 957 (1982), 97-109. |
[6] |
H. Y. Hsu,
Certain integrals and infinite series involving ultra-spherical polynomials and Bessel functions, Duke Math. J., 4 (1938), 374-383.
doi: 10.1215/S0012-7094-38-00429-6. |
[7] |
S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Springer-Verlag, 1963.
doi: 10.1007/BFb0092243.![]() ![]() ![]() |
[8] |
S. B. Kuksin,
Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, (Russian) Funktsional. Anal. i Prilozhen., 21 (1987), 22-37.
|
[9] |
S. B. Kuksin,
Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Math. USSR Izv., 32 (1989), 39-62.
|
[10] |
S. B. Kuksin and J. Pöschel,
Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation, Anal. of Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[11] |
L. Nirenberg,
An extended interpolation inequality, Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 20 (1966), 733-737.
|
[12] |
L. Nirenberg,
On elliptic partial differential equations, IL Principio Di Minimo E Sue Applicazioni Alle Equazioni Funzionali, 17 (2011), 1-48.
doi: 10.1007/978-3-642-10926-3_1. |
[13] |
J. Pöschel,
Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.
doi: 10.1007/BF02566420. |
[14] |
J. Pöschel,
A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Super. Pisa, 23 (2006), 119-148.
|
[15] |
C. E. Wayne,
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.
doi: 10.1007/BF02104499. |
[16] |
X. Yuan,
Invariant manifold of hyperbolic-elliptic type for nonlinear wave equation, Int. J. Math. Math. Sci., 2003 (2003), 1111-1136.
doi: 10.1155/S0161171203207092. |
[17] |
X. Yuan,
Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations, 230 (2006), 213-274.
doi: 10.1016/j.jde.2005.12.012. |
[18] |
X. Yuan,
Invatiant tori of nonlinear wave equations with a given potential, Discrete Contin. Dyn. Syst., 16 (2006), 615-634.
doi: 10.3934/dcds.2006.16.615. |
[1] |
Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467 |
[2] |
Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3169-3185. doi: 10.3934/dcds.2022013 |
[3] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[4] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[5] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[6] |
Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585 |
[7] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
[8] |
Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019 |
[9] |
Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615 |
[10] |
Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101 |
[11] |
Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839 |
[12] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[13] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[14] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[15] |
Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75 |
[16] |
Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623 |
[17] |
Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579 |
[18] |
Koichiro Naito. Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 449-488. doi: 10.3934/dcds.2004.11.449 |
[19] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4531-4543. doi: 10.3934/dcds.2021047 |
[20] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]