\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Almost automorphic delayed differential equations and Lasota-Wazewska model

Abstract Full Text(HTML) Related Papers Cited by
  • Existence of almost automorphic solutions for abstract delayed differential equations is established. Using ergodicity, exponential dichotomy and Bi-almost automorphicity on the homogeneous part, sufficient conditions for the existence and uniqueness of almost automorphic solutions are given.

    Mathematics Subject Classification: Primary:43A60, 65L03;Secondary:92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. BlotG. MophouG. M. N'Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Analysis, 71 (2009), 903-909.  doi: 10.1016/j.na.2008.10.113.
    [2] S. Bochner, A new approach to almost periodicity, Proceedings of the National Academic Science of the United States of America, 48 (1962), 2039-2043.  doi: 10.1073/pnas.48.12.2039.
    [3] S. Bochner, Continuous mapping of almost automorphic and almost periodic functions, Proceedings of the National Academic Science of the United States of America, 52 (1964), 907-910.  doi: 10.1073/pnas.52.4.907.
    [4] T. Caraballo and D. N. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition Ⅰ, J. Differential Equations, 246 (2009), 108-128.  doi: 10.1016/j.jde.2008.04.001.
    [5] T. Caraballo and D. N. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition Ⅱ, J. Differential Equations, 246 (2009), 1164-1186.  doi: 10.1016/j.jde.2008.07.025.
    [6] S. Castillo and M. Pinto, Dichotomy and almost automorphic solution of difference system, Electron. J. Qual. Theory Differ. Equ. 32 (2013), 17 pp.
    [7] A. Chávez, S. Castillo and M. Pinto, Discontinuous almost automorphic functions and almost automorphic solutions of differential equations with piecewise constant arguments, Electron. J. Differential Equations, 56 (2014), 13 pp.
    [8] P. CieutatS. Fatajou and G. M. N'Guérékata, Composition of pseudo almost periodic and pseudo almost automorphic functions and applications to evolution equations, Applicable Analysis, 89 (2010), 11-27.  doi: 10.1080/00036810903397503.
    [9] C. Corduneanu, Almost Periodic Functions [With the collaboration of N. Gheorghiu and V. Barbu, Translated from the Romanian by Gitta Bernstein and Eugene Tomer, Interscience Tracts in Pure and Applied Mathematics, No. 22], Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968.
    [10] A. CoronelM. Pinto and D. Sepúlveda, Weighted pseudo almost periodic functions, convolutions and abstract integral equations, J. Math. Anal. Appl., 435 (2016), 1382-1399.  doi: 10.1016/j.jmaa.2015.11.034.
    [11] C. Cuevas and M. Pinto, Existence and uniqueness of pseudo-almost periodic solutions of semilinear Cauchy problems with non dense domain, Nonlinear Anal., 45 (2001), 73-83.  doi: 10.1016/S0362-546X(99)00330-2.
    [12] H.-S. DingT.-J. Xiao and J. Liang, Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions., J. Math. Anal. Appl., 338 (2008), 141-151.  doi: 10.1016/j.jmaa.2007.05.014.
    [13] T. Diagana, Pseudo Almost Periodic Functions in Banach Space Nova Science Publishers, Inc. , New York, 2007.
    [14] L. DuanL. Huang and Y. Chen, Global exponential stability of periodic solutions to a delay Lasota-Wazewska model with discontinuous harvesting, Proc. Amer. Math. Soc., 144 (2016), 561-573.  doi: 10.1090/proc12714.
    [15] S. FatajouN. V. MinhG. N'Guérékata and A. Pankov, Stepanov-like almost automorphic solutions for nonautonomous evolution equations, Electronic Journal of Differential Equations, 121 (2007), 1-17. 
    [16] C. Feng, On the existence and uniqueness of almost periodic solutions for delay logistic equations, Appl. Math. Comput., 136 (2003), 487-494.  doi: 10.1016/S0096-3003(02)00072-3.
    [17] S. G. Gal and G. M. N'Guérékata, Almost automorphic fuzzy-number-valued functions, Journal of Fuzzy Mathematics, 13 (2005), 185-208. 
    [18] J. A. Goldstein and G. M. N'Guérékata, Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc., 133 (2005), 2401-2408.  doi: 10.1090/S0002-9939-05-07790-7.
    [19] R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.  doi: 10.1090/S0002-9947-1982-0664046-4.
    [20] E. Hernández and J. P. C. dos Santos, Asymptotically almost periodic solutions for a class of partial integrodifferential equations, Electron. J. Differential Equations, 38 (2006), 1-8. 
    [21] H. R. HenríquezM. Pierri and P. Táboas, On $S$-asymptotically $ω$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 365-382.  doi: 10.1016/j.jmaa.2008.02.023.
    [22] H. R. HenríquezM. Pierri and P. Táboas, Existence of S-asymptotically ω-periodic solutions for abstract neutral equations, Bull. Austral. Math. Soc., 78 (2008), 365-382.  doi: 10.1017/S0004972708000713.
    [23] Z. C. Liang, Asymptotically periodic solutions of a class of second order nonlinear differential equations, Proc. Amer. Math. Soc., 99 (1987), 693-699.  doi: 10.1090/S0002-9939-1987-0877042-9.
    [24] J. LiuG. M. N'Guérékata and N. V. Minh, A Massera type theorem for almost automorphic solutions of differential equations, Journal of Mathematical Analysis and Applications, 299 (2004), 587-599.  doi: 10.1016/j.jmaa.2004.05.046.
    [25] E. LizC. Martínez and S. Trofimchuk, Attractivity properties of infinite delay Mackey-Glass type equations, Differential and Integral Equations, 15 (2002), 875-896. 
    [26] N. V. MinhT. Naito and G. N'Guérékata, A spectral countability condition for almost automorphy of solutions of differential equations, Proceedings of the American Mathematical Society, 134 (2006), 3257-3266.  doi: 10.1090/S0002-9939-06-08528-5.
    [27] N. V. Minh and T. T. Dat, On the almost automorphy of bounded solutions of differential equations with piecewise constant argument, Journal of Mathematical Analysis and Applications, 326 (2007), 165-178.  doi: 10.1016/j.jmaa.2006.02.079.
    [28] G. M. N'Guérékata, Topics in Almost Automorphy Springer-Verlag, New York, 2005.
    [29] G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces Kluwer Academic/Plenum Publishers, New York, 2001.
    [30] S. Nicola and M. Pierre, A note on $S$-asymptotically periodic functions, Nonlinear Analysis, Real World Applications, 10 (2009), 2937-2938.  doi: 10.1016/j.nonrwa.2008.09.011.
    [31] M. Pinto, Pseudo-almost periodic solutions of neutral integral and differential equations and applications, Nonlinear Analysis, 72 (2010), 4377-4383.  doi: 10.1016/j.na.2009.12.042.
    [32] M. Pinto and G. Robledo, Cauchy matrix for linear almost periodic systems and some consequences, Nonlinear Anal., 74 (2011), 5426-5439.  doi: 10.1016/j.na.2011.05.027.
    [33] M. Pinto and G. Robledo, Diagonalizability of nonautonomous linear systems with bounded continuous coefficients, J. Math. Anal. Appl., 407 (2013), 513-526.  doi: 10.1016/j.jmaa.2013.05.038.
    [34] M. Pinto and G. Robledo, Existence and stability of almost periodic solutions in impulsive neural network models, Appl. Math. Comput., 217 (2010), 4167-4177.  doi: 10.1016/j.amc.2010.10.033.
    [35] M. PintoV. Torres and G. Robledo, Asymptotic equivalence of almost periodic solutions for a class of perturbed almost periodic systems, Glasg. Math. J., 52 (2010), 583-592.  doi: 10.1017/S0017089510000443.
    [36] W. R. Utz and P. Waltman, Asymptotically almost periodicity of solutions of a system of differential equations, Proc. Amer. Math. Soc., 18 (1967), 597-601.  doi: 10.1090/S0002-9939-1967-0212285-6.
    [37] W. A. Veech, Almost automorphic functions, Proceedings of the National Academy of Science of the United states of America, 49 (1963), 462-464.  doi: 10.1073/pnas.49.4.462.
    [38] W. A. Veech, Almost automorphic function on groups, American Journal of Mathematics, 87 (1965), 719-751.  doi: 10.2307/2373071.
    [39] M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the red-blood cell system, Ann. Polish Math. Soc. Ser. Ⅲ, Appl. Math., 6 (1976), 23-40. 
    [40] F. Wei and K. Wang, Global stability and asymptotically periodic solutions for non autonomous cooperative Lotka-Volterra diffusion system, Applied Math. and Computation, 182 (2006), 161-165.  doi: 10.1016/j.amc.2006.03.044.
    [41] F. Wei and K. Wang, Asymptotically periodic solutions of N-species cooperation system with time delay, Nonlinear Analysis, Real World and Applications, 7 (2006), 591-596.  doi: 10.1016/j.nonrwa.2005.03.019.
    [42] T. XiaoX. Zhu and J. Liang, Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications, Nonlinear Analysis, 70 (2009), 4079-4085.  doi: 10.1016/j.na.2008.08.018.
    [43] Z. Yao, Uniqueness and exponential stability of almost periodic positive solution for Lasota-Wazewska model with impulse and infinite delay, Math. Methods Appl. Sci., 38 (2015), 677-684.  doi: 10.1002/mma.3098.
    [44] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions Applied Mathematical Sciences, 14 Springer-Verlag, New York-Heidelberg, 1975.
    [45] H. Zhao, Existence and global attractivity of almost periodic solutions for cellular neutral network with distributed delays, Appl. Math. Comput., 154 (2004), 683-695.  doi: 10.1016/S0096-3003(03)00743-4.
    [46] S. Zaidman, Almost automorphic solutions of same abstract evolution equations, Instituto Lombardo, Accademia di Science e Letter, 110 (1976), 578-588. 
    [47] S. Zaidman, Existence of asymptotically almost-periodic and of almost automorphic solutions for same classes of abstract differential equations, Annales des Science Mathématiques du Québec, 13 (1989), 79-88. 
    [48] M. Zaki, Almost automorphic solutions of certain abstract differential equations, Annali di Mathematica pura et Applicata, 101 (1974), 91-114.  doi: 10.1007/BF02417100.
    [49] C. Zhang, Almost Periodic Type Functions and Ergodicity, Science Press, Beijing, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-007-1073-3.
  • 加载中
SHARE

Article Metrics

HTML views(118) PDF downloads(201) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return