In this work we are interested in the mean-field formulation of kinetic models under control actions where the control is formulated through a model predictive control strategy (MPC) with varying horizon. The relation between the (usually hard to compute) optimal control and the MPC approach is investigated theoretically in the mean-field limit. We establish a computable and provable bound on the difference in the cost functional for MPC controlled and optimal controlled system dynamics in the mean-field limit. The result of the present work extends previous findings for systems of ordinary differential equations. Numerical results in the mean-field setting are given.
Citation: |
Figure 2.
Value of the cost functional
[1] | G. Albi, M. Bongini, E. Cristiani and D. Kalise, Invisible control of self-organizing agents leaving unknown environments, SIAM Journal of Applied Mathematics, 76 (2016), 1683-1710. doi: 10.1137/15M1017016. |
[2] | G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Communications in Mathematical Sciences, 13 (2015), 1407-1429. doi: 10.4310/CMS.2015.v13.n6.a3. |
[3] | G. Albi, L. Pareschi and M. Zanella, Boltzmann type control of opinion consensus through leaders Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20140138, 18pp. doi: 10.1098/rsta.2014.0138. |
[4] | G. Albi, L. Pareschi and M. Zanella, Uncertainty quantification in control problems for flocking models Mathematical Problems in Engineering 2015 (2015), 14 pages. doi: 10.1155/2015/850124. |
[5] | D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for re-entrant supply chains, SIAM Journal on Multiscale Modeling & Simulation, 3 (2005), 782-800. doi: 10.1137/030601636. |
[6] | D. Balagué, J. A. Carrillo and Y. Yao, Confinement for repulsive-attractive kernels, Discrete and Continuous Dynamical Systems -Series B, 19 (2014), 1227-1248. doi: 10.3934/dcdsb.2014.19.1227. |
[7] | N. Bellomo, G. A. Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation SpringerBriefs in Mathematics, 2013. doi: 10.1007/978-1-4614-7242-1. |
[8] | N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems Mathematical Models and Methods in Applied Sciences 22 (2012), 1140006, 29pp. doi: 10.1142/S0218202511400069. |
[9] | A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory SpringerBriefs in Mathematics, New York, 2013. doi: 10.1007/978-1-4614-8508-7. |
[10] | A. Blanchet and G. Carlier, From Nash to Cournot-Nash equilibria via the Monge–Kantorovich problem, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130398, 11pp. doi: 10.1098/rsta.2013.0398. |
[11] | M. Bongini, M. Fornasier and D. Kalise, (UN)conditional consensus emergence under perturbed and decentralized feedback controls, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 4071-4094. doi: 10.3934/dcds.2015.35.4071. |
[12] | E. F. Camacho and C. Bordons Alba, Model Predictive Control Springer-Verlag London, 2007. |
[13] | M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker--Smale model, Mathematical Control and Related Fields, 3 (2013), 447-466. doi: 10.3934/mcrf.2013.3.447. |
[14] | M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Mathematical Models and Methods in Applied Sciences, 25 (2015), 521-564. doi: 10.1142/S0218202515400059. |
[15] | M. Caponigro, A. C. Lai and B. Piccoli, A nonlinear model of opinion formation on the sphere, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 4241-4268. doi: 10.3934/dcds.2015.35.4241. |
[16] | P. Cardaliaguet, Notes on Mean Field Games P. -L. Lions' lectures at Collège de France, 2010. |
[17] | R. Carmona, J.-P. Fouque and L.-H. Sun, Mean field games and systemic risk, Communications in Mathematical Sciences, 13 (2015), 911-933. doi: 10.4310/CMS.2015.v13.n4.a4. |
[18] | J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol. , Birkh¨auser Boston, Inc. , Boston, MA, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12. |
[19] | R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM: Control, Optimization and Calculus of Variations, 17 (2011), 353-379. doi: 10.1051/cocv/2010007. |
[20] | R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM Journal on Applied Dynamical Systems, 11 (2012), 741-770. doi: 10.1137/110854321. |
[21] | S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics, 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0. |
[22] | I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513-516. doi: 10.1038/nature03236. |
[23] | E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics MS & A: Modeling, Simulation and Applications, 12. Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2. |
[24] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842. |
[25] | P. Degond, M. Herty and J. -G. Liu, Meanfield games and model predictive control, Preprint, arXiv(2014). |
[26] | P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods and Applications of Analysis, 20 (2013), 89-114. doi: 10.4310/MAA.2013.v20.n2.a1. |
[27] | P. Degond, J. -G. Liu and C. Ringhofer, Evolution of wealth in a nonconservative economy driven by local Nash equilibria Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20130394, 15pp. doi: 10.1098/rsta.2013.0394. |
[28] | M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4. |
[29] | B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 465 (2009), 3687-3708. doi: 10.1098/rspa.2009.0239. |
[30] | M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20130400, 21pp. doi: 10.1098/rsta.2013.0400. |
[31] | M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM: Control, Optimization, and Calculus of Variations, 20 (2014), 1123-1152. doi: 10.1051/cocv/2014009. |
[32] | S. Galam, Y. Gefen and Y. Shapir, Sociophysics: A new approach of sociological collective behavior, Journal of Mathematical Sociology, 9 (1982), 1-13. |
[33] | G. Grimm, M. J. Messina, S. E. Tuna and A. R. Teel, Model predictive control: For want of a local control Lyapunov function, all is not lost, IEEE Transactions on Automatic Control, 50 (2005), 546-558. doi: 10.1109/TAC.2005.847055. |
[34] | L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems, SIAM Journal on Control and Optimization, 48 (2009), 1206-1228. doi: 10.1137/070707853. |
[35] | L. Grüne, J. Pannek, M. Seehafer and K. Worthmann, Analysis of unconstrained nonlinear MPC schemes with time varying control horizon, SIAM Journal on Control and Optimization, 48 (2010), 4938-4962. doi: 10.1137/090758696. |
[36] | M. Herty and C. Ringhofer, Feedback controls for continuous priority models in supply chain management, Computational Methods in Applied Mathematics, 11 (2011), 206-213. doi: 10.2478/cmam-2011-0011. |
[37] | M. Herty, S. Steffensen and L. Pareschi, Mean-field control and Riccati equations, Networks and Heterogeneous Media, 10 (2015), 699-715. doi: 10.3934/nhm.2015.10.699. |
[38] | Y. Huang and A. Bertozzi, Asymptotics of blowup solutions for the aggregation equation, Discrete and Continuous Dynamical Systems -Series B, 17 (2012), 1309-1331. doi: 10.3934/dcdsb.2012.17.1309. |
[39] | A. Jadbabaie and J. Hauser, On the stability of receding horizon control with a general terminal cost, IEEE Transactions on Automatic Control, 50 (2005), 674-678. doi: 10.1109/TAC.2005.846597. |
[40] | M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design John Wiley & Sons Inc. , New York, 1995. |
[41] | J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260. doi: 10.1007/s11537-007-0657-8. |
[42] | D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814. doi: 10.1016/S0005-1098(99)00214-9. |
[43] | H. Michalska and D. Q. Mayne, Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 38 (1993), 1623-1633. doi: 10.1109/9.262032. |
[44] | H. Michalska and D. Q. Mayne, Moving horizon observers and observer-based control, IEEE Transactions on Automatic Control, 40 (1995), 995-1006. doi: 10.1109/9.388677. |
[45] | S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, Journal of Statistical Physics, 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9. |
[46] | S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866. |
[47] | L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, Journal of Statistical Physics, 124 (2006), 747-779. doi: 10.1007/s10955-006-9025-y. |
[48] | L. Pareschi and G. Toscani, Interacting Multi-Agent Systems. Kinetic Equations & Monte Carlo Methods Oxford University Press, 2013. |
[49] | E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems Second edition. Texts in Applied Mathematics, 6. Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7. |
[50] | G. Tadmor, Receding horizon revisited: An easy way to robustly stabilize an LTV system, Systems Control Letters, 18 (1992), 285-294. doi: 10.1016/0167-6911(92)90058-Z. |
[51] | G. Toscani, Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481-496. doi: 10.4310/CMS.2006.v4.n3.a1. |