• Previous Article
    Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics
  • DCDS Home
  • This Issue
  • Next Article
    A unified approach to weighted Hardy type inequalities on Carnot groups
April  2017, 37(4): 2023-2043. doi: 10.3934/dcds.2017086

Performance bounds for the mean-field limit of constrained dynamics

1. 

Department of Mathematics, IGPM, RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany

2. 

Department of Mathematics and Computer Science, University of Ferrara, Via N. Machiavelli 35, Ferrara, 44121, Italy

* Corresponding author: Mattia Zanella

Received  August 2016 Revised  October 2016 Published  December 2016

In this work we are interested in the mean-field formulation of kinetic models under control actions where the control is formulated through a model predictive control strategy (MPC) with varying horizon. The relation between the (usually hard to compute) optimal control and the MPC approach is investigated theoretically in the mean-field limit. We establish a computable and provable bound on the difference in the cost functional for MPC controlled and optimal controlled system dynamics in the mean-field limit. The result of the present work extends previous findings for systems of ordinary differential equations. Numerical results in the mean-field setting are given.

Citation: Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086
References:
[1]

G. AlbiM. BonginiE. Cristiani and D. Kalise, Invisible control of self-organizing agents leaving unknown environments, SIAM Journal of Applied Mathematics, 76 (2016), 1683-1710.  doi: 10.1137/15M1017016.  Google Scholar

[2]

G. AlbiM. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Communications in Mathematical Sciences, 13 (2015), 1407-1429.  doi: 10.4310/CMS.2015.v13.n6.a3.  Google Scholar

[3]

G. Albi, L. Pareschi and M. Zanella, Boltzmann type control of opinion consensus through leaders Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20140138, 18pp. doi: 10.1098/rsta.2014.0138.  Google Scholar

[4]

G. Albi, L. Pareschi and M. Zanella, Uncertainty quantification in control problems for flocking models Mathematical Problems in Engineering 2015 (2015), 14 pages. doi: 10.1155/2015/850124.  Google Scholar

[5]

D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for re-entrant supply chains, SIAM Journal on Multiscale Modeling & Simulation, 3 (2005), 782-800.  doi: 10.1137/030601636.  Google Scholar

[6]

D. BalaguéJ. A. Carrillo and Y. Yao, Confinement for repulsive-attractive kernels, Discrete and Continuous Dynamical Systems -Series B, 19 (2014), 1227-1248.  doi: 10.3934/dcdsb.2014.19.1227.  Google Scholar

[7]

N. Bellomo, G. A. Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation SpringerBriefs in Mathematics, 2013. doi: 10.1007/978-1-4614-7242-1.  Google Scholar

[8]

N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems Mathematical Models and Methods in Applied Sciences 22 (2012), 1140006, 29pp. doi: 10.1142/S0218202511400069.  Google Scholar

[9]

A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory SpringerBriefs in Mathematics, New York, 2013. doi: 10.1007/978-1-4614-8508-7.  Google Scholar

[10]

A. Blanchet and G. Carlier, From Nash to Cournot-Nash equilibria via the Monge–Kantorovich problem, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130398, 11pp. doi: 10.1098/rsta.2013.0398.  Google Scholar

[11]

M. BonginiM. Fornasier and D. Kalise, (UN)conditional consensus emergence under perturbed and decentralized feedback controls, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 4071-4094.  doi: 10.3934/dcds.2015.35.4071.  Google Scholar

[12]

E. F. Camacho and C. Bordons Alba, Model Predictive Control Springer-Verlag London, 2007. Google Scholar

[13]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker--Smale model, Mathematical Control and Related Fields, 3 (2013), 447-466.  doi: 10.3934/mcrf.2013.3.447.  Google Scholar

[14]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Mathematical Models and Methods in Applied Sciences, 25 (2015), 521-564.  doi: 10.1142/S0218202515400059.  Google Scholar

[15]

M. CaponigroA. C. Lai and B. Piccoli, A nonlinear model of opinion formation on the sphere, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 4241-4268.  doi: 10.3934/dcds.2015.35.4241.  Google Scholar

[16]

P. Cardaliaguet, Notes on Mean Field Games P. -L. Lions' lectures at Collège de France, 2010. Google Scholar

[17]

R. CarmonaJ.-P. Fouque and L.-H. Sun, Mean field games and systemic risk, Communications in Mathematical Sciences, 13 (2015), 911-933.  doi: 10.4310/CMS.2015.v13.n4.a4.  Google Scholar

[18]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol. , Birkh¨auser Boston, Inc. , Boston, MA, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[19]

R. M. ColomboM. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM: Control, Optimization and Calculus of Variations, 17 (2011), 353-379.  doi: 10.1051/cocv/2010007.  Google Scholar

[20]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM Journal on Applied Dynamical Systems, 11 (2012), 741-770.  doi: 10.1137/110854321.  Google Scholar

[21]

S. CordierL. Pareschi and G. Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics, 120 (2005), 253-277.  doi: 10.1007/s10955-005-5456-0.  Google Scholar

[22]

I. CouzinJ. KrauseN. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513-516.  doi: 10.1038/nature03236.  Google Scholar

[23]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics MS & A: Modeling, Simulation and Applications, 12. Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[24]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[25]

P. Degond, M. Herty and J. -G. Liu, Meanfield games and model predictive control, Preprint, arXiv(2014). Google Scholar

[26]

P. DegondJ.-G. LiuS. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods and Applications of Analysis, 20 (2013), 89-114.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[27]

P. Degond, J. -G. Liu and C. Ringhofer, Evolution of wealth in a nonconservative economy driven by local Nash equilibria Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20130394, 15pp. doi: 10.1098/rsta.2013.0394.  Google Scholar

[28]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[29]

B. DüringP. MarkowichJ.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 465 (2009), 3687-3708.  doi: 10.1098/rspa.2009.0239.  Google Scholar

[30]

M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20130400, 21pp. doi: 10.1098/rsta.2013.0400.  Google Scholar

[31]

M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM: Control, Optimization, and Calculus of Variations, 20 (2014), 1123-1152.  doi: 10.1051/cocv/2014009.  Google Scholar

[32]

S. GalamY. Gefen and Y. Shapir, Sociophysics: A new approach of sociological collective behavior, Journal of Mathematical Sociology, 9 (1982), 1-13.   Google Scholar

[33]

G. GrimmM. J. MessinaS. E. Tuna and A. R. Teel, Model predictive control: For want of a local control Lyapunov function, all is not lost, IEEE Transactions on Automatic Control, 50 (2005), 546-558.  doi: 10.1109/TAC.2005.847055.  Google Scholar

[34]

L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems, SIAM Journal on Control and Optimization, 48 (2009), 1206-1228.  doi: 10.1137/070707853.  Google Scholar

[35]

L. GrüneJ. PannekM. Seehafer and K. Worthmann, Analysis of unconstrained nonlinear MPC schemes with time varying control horizon, SIAM Journal on Control and Optimization, 48 (2010), 4938-4962.  doi: 10.1137/090758696.  Google Scholar

[36]

M. Herty and C. Ringhofer, Feedback controls for continuous priority models in supply chain management, Computational Methods in Applied Mathematics, 11 (2011), 206-213.  doi: 10.2478/cmam-2011-0011.  Google Scholar

[37]

M. HertyS. Steffensen and L. Pareschi, Mean-field control and Riccati equations, Networks and Heterogeneous Media, 10 (2015), 699-715.  doi: 10.3934/nhm.2015.10.699.  Google Scholar

[38]

Y. Huang and A. Bertozzi, Asymptotics of blowup solutions for the aggregation equation, Discrete and Continuous Dynamical Systems -Series B, 17 (2012), 1309-1331.  doi: 10.3934/dcdsb.2012.17.1309.  Google Scholar

[39]

A. Jadbabaie and J. Hauser, On the stability of receding horizon control with a general terminal cost, IEEE Transactions on Automatic Control, 50 (2005), 674-678.  doi: 10.1109/TAC.2005.846597.  Google Scholar

[40]

M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design John Wiley & Sons Inc. , New York, 1995. Google Scholar

[41]

J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[42]

D. Q. MayneJ. B. RawlingsC. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.  doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[43]

H. Michalska and D. Q. Mayne, Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 38 (1993), 1623-1633.  doi: 10.1109/9.262032.  Google Scholar

[44]

H. Michalska and D. Q. Mayne, Moving horizon observers and observer-based control, IEEE Transactions on Automatic Control, 40 (1995), 995-1006.  doi: 10.1109/9.388677.  Google Scholar

[45]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, Journal of Statistical Physics, 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[46]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.  Google Scholar

[47]

L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, Journal of Statistical Physics, 124 (2006), 747-779.  doi: 10.1007/s10955-006-9025-y.  Google Scholar

[48]

L. Pareschi and G. Toscani, Interacting Multi-Agent Systems. Kinetic Equations & Monte Carlo Methods Oxford University Press, 2013. Google Scholar

[49]

E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems Second edition. Texts in Applied Mathematics, 6. Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[50]

G. Tadmor, Receding horizon revisited: An easy way to robustly stabilize an LTV system, Systems Control Letters, 18 (1992), 285-294.  doi: 10.1016/0167-6911(92)90058-Z.  Google Scholar

[51]

G. Toscani, Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.  Google Scholar

show all references

References:
[1]

G. AlbiM. BonginiE. Cristiani and D. Kalise, Invisible control of self-organizing agents leaving unknown environments, SIAM Journal of Applied Mathematics, 76 (2016), 1683-1710.  doi: 10.1137/15M1017016.  Google Scholar

[2]

G. AlbiM. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Communications in Mathematical Sciences, 13 (2015), 1407-1429.  doi: 10.4310/CMS.2015.v13.n6.a3.  Google Scholar

[3]

G. Albi, L. Pareschi and M. Zanella, Boltzmann type control of opinion consensus through leaders Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20140138, 18pp. doi: 10.1098/rsta.2014.0138.  Google Scholar

[4]

G. Albi, L. Pareschi and M. Zanella, Uncertainty quantification in control problems for flocking models Mathematical Problems in Engineering 2015 (2015), 14 pages. doi: 10.1155/2015/850124.  Google Scholar

[5]

D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for re-entrant supply chains, SIAM Journal on Multiscale Modeling & Simulation, 3 (2005), 782-800.  doi: 10.1137/030601636.  Google Scholar

[6]

D. BalaguéJ. A. Carrillo and Y. Yao, Confinement for repulsive-attractive kernels, Discrete and Continuous Dynamical Systems -Series B, 19 (2014), 1227-1248.  doi: 10.3934/dcdsb.2014.19.1227.  Google Scholar

[7]

N. Bellomo, G. A. Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation SpringerBriefs in Mathematics, 2013. doi: 10.1007/978-1-4614-7242-1.  Google Scholar

[8]

N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems Mathematical Models and Methods in Applied Sciences 22 (2012), 1140006, 29pp. doi: 10.1142/S0218202511400069.  Google Scholar

[9]

A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory SpringerBriefs in Mathematics, New York, 2013. doi: 10.1007/978-1-4614-8508-7.  Google Scholar

[10]

A. Blanchet and G. Carlier, From Nash to Cournot-Nash equilibria via the Monge–Kantorovich problem, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130398, 11pp. doi: 10.1098/rsta.2013.0398.  Google Scholar

[11]

M. BonginiM. Fornasier and D. Kalise, (UN)conditional consensus emergence under perturbed and decentralized feedback controls, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 4071-4094.  doi: 10.3934/dcds.2015.35.4071.  Google Scholar

[12]

E. F. Camacho and C. Bordons Alba, Model Predictive Control Springer-Verlag London, 2007. Google Scholar

[13]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker--Smale model, Mathematical Control and Related Fields, 3 (2013), 447-466.  doi: 10.3934/mcrf.2013.3.447.  Google Scholar

[14]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Mathematical Models and Methods in Applied Sciences, 25 (2015), 521-564.  doi: 10.1142/S0218202515400059.  Google Scholar

[15]

M. CaponigroA. C. Lai and B. Piccoli, A nonlinear model of opinion formation on the sphere, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 4241-4268.  doi: 10.3934/dcds.2015.35.4241.  Google Scholar

[16]

P. Cardaliaguet, Notes on Mean Field Games P. -L. Lions' lectures at Collège de France, 2010. Google Scholar

[17]

R. CarmonaJ.-P. Fouque and L.-H. Sun, Mean field games and systemic risk, Communications in Mathematical Sciences, 13 (2015), 911-933.  doi: 10.4310/CMS.2015.v13.n4.a4.  Google Scholar

[18]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol. , Birkh¨auser Boston, Inc. , Boston, MA, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[19]

R. M. ColomboM. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM: Control, Optimization and Calculus of Variations, 17 (2011), 353-379.  doi: 10.1051/cocv/2010007.  Google Scholar

[20]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM Journal on Applied Dynamical Systems, 11 (2012), 741-770.  doi: 10.1137/110854321.  Google Scholar

[21]

S. CordierL. Pareschi and G. Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics, 120 (2005), 253-277.  doi: 10.1007/s10955-005-5456-0.  Google Scholar

[22]

I. CouzinJ. KrauseN. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513-516.  doi: 10.1038/nature03236.  Google Scholar

[23]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics MS & A: Modeling, Simulation and Applications, 12. Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[24]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[25]

P. Degond, M. Herty and J. -G. Liu, Meanfield games and model predictive control, Preprint, arXiv(2014). Google Scholar

[26]

P. DegondJ.-G. LiuS. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods and Applications of Analysis, 20 (2013), 89-114.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[27]

P. Degond, J. -G. Liu and C. Ringhofer, Evolution of wealth in a nonconservative economy driven by local Nash equilibria Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20130394, 15pp. doi: 10.1098/rsta.2013.0394.  Google Scholar

[28]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[29]

B. DüringP. MarkowichJ.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 465 (2009), 3687-3708.  doi: 10.1098/rspa.2009.0239.  Google Scholar

[30]

M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2014), 20130400, 21pp. doi: 10.1098/rsta.2013.0400.  Google Scholar

[31]

M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM: Control, Optimization, and Calculus of Variations, 20 (2014), 1123-1152.  doi: 10.1051/cocv/2014009.  Google Scholar

[32]

S. GalamY. Gefen and Y. Shapir, Sociophysics: A new approach of sociological collective behavior, Journal of Mathematical Sociology, 9 (1982), 1-13.   Google Scholar

[33]

G. GrimmM. J. MessinaS. E. Tuna and A. R. Teel, Model predictive control: For want of a local control Lyapunov function, all is not lost, IEEE Transactions on Automatic Control, 50 (2005), 546-558.  doi: 10.1109/TAC.2005.847055.  Google Scholar

[34]

L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems, SIAM Journal on Control and Optimization, 48 (2009), 1206-1228.  doi: 10.1137/070707853.  Google Scholar

[35]

L. GrüneJ. PannekM. Seehafer and K. Worthmann, Analysis of unconstrained nonlinear MPC schemes with time varying control horizon, SIAM Journal on Control and Optimization, 48 (2010), 4938-4962.  doi: 10.1137/090758696.  Google Scholar

[36]

M. Herty and C. Ringhofer, Feedback controls for continuous priority models in supply chain management, Computational Methods in Applied Mathematics, 11 (2011), 206-213.  doi: 10.2478/cmam-2011-0011.  Google Scholar

[37]

M. HertyS. Steffensen and L. Pareschi, Mean-field control and Riccati equations, Networks and Heterogeneous Media, 10 (2015), 699-715.  doi: 10.3934/nhm.2015.10.699.  Google Scholar

[38]

Y. Huang and A. Bertozzi, Asymptotics of blowup solutions for the aggregation equation, Discrete and Continuous Dynamical Systems -Series B, 17 (2012), 1309-1331.  doi: 10.3934/dcdsb.2012.17.1309.  Google Scholar

[39]

A. Jadbabaie and J. Hauser, On the stability of receding horizon control with a general terminal cost, IEEE Transactions on Automatic Control, 50 (2005), 674-678.  doi: 10.1109/TAC.2005.846597.  Google Scholar

[40]

M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design John Wiley & Sons Inc. , New York, 1995. Google Scholar

[41]

J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[42]

D. Q. MayneJ. B. RawlingsC. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.  doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[43]

H. Michalska and D. Q. Mayne, Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 38 (1993), 1623-1633.  doi: 10.1109/9.262032.  Google Scholar

[44]

H. Michalska and D. Q. Mayne, Moving horizon observers and observer-based control, IEEE Transactions on Automatic Control, 40 (1995), 995-1006.  doi: 10.1109/9.388677.  Google Scholar

[45]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, Journal of Statistical Physics, 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[46]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.  Google Scholar

[47]

L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, Journal of Statistical Physics, 124 (2006), 747-779.  doi: 10.1007/s10955-006-9025-y.  Google Scholar

[48]

L. Pareschi and G. Toscani, Interacting Multi-Agent Systems. Kinetic Equations & Monte Carlo Methods Oxford University Press, 2013. Google Scholar

[49]

E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems Second edition. Texts in Applied Mathematics, 6. Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[50]

G. Tadmor, Receding horizon revisited: An easy way to robustly stabilize an LTV system, Systems Control Letters, 18 (1992), 285-294.  doi: 10.1016/0167-6911(92)90058-Z.  Google Scholar

[51]

G. Toscani, Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.  Google Scholar

Figure 1.  Computation of $\alpha_N$ for different values of the regularization parameter $\nu$.
Figure 2.  Value of the cost functional $J_T^{u^{MPC}_N}(X_0)$ for controls obtained using a MPC strategy with control horizon $N$ (red) and presentation of the optimal costs $V_T^{*}(X_0)$ multiplied by $\frac{1}{\alpha_N}$ where $\alpha_N$ is computed as in [35,Theorem 5.4]. For $N\leq 4$ no estimate of the type (10) could be established.
Figure 3.  Experimental results for the optimization problem with varying optimization horizon $N$ and regularization constant $\nu=10^2$.
Figure 4.  Experimental results for the optimization problem with varying optimization horizon $N$ and regularization constant $\nu=10^3$.
[1]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[2]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[3]

Franco Flandoli, Enrico Priola, Giovanni Zanco. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3037-3067. doi: 10.3934/dcds.2019126

[4]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[5]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[6]

Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control & Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026

[7]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[8]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[9]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[10]

Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic & Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661

[11]

Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks & Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359

[12]

Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336

[13]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[14]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[15]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[16]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[17]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019111

[18]

Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks & Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31

[19]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[20]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2019099

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (2)
  • Cited by (2)

Other articles
by authors

[Back to Top]