April  2017, 37(4): 2077-2102. doi: 10.3934/dcds.2017089

Almost global existence for cubic nonlinear Schrödinger equations in one space dimension

1. 

Department of Mathematics, University of California, 970 Evans Hall, Berkeley, CA 94720-3840, USA

2. 

Department of Mathematics, Princeton University, Fine Hall, 304 Washington Rd, Princeton, NJ 08544, USA

* Corresponding author: Jason Murphy

Received  May 2016 Revised  November 2016 Published  December 2016

We consider non-gauge-invariant cubic nonlinear Schrödinger equations in one space dimension.We show that initial data of size $\varepsilon$ in a weighted Sobolev space lead to solutions with sharp $L_x^∞$ decay up to time $\exp(C\varepsilon^{-2})$. We also exhibit norm growth beyond this time for a specific choice of nonlinearity.

Citation: Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089
References:
[1]

J. Barab, Nonexistence of asymptotically free solutions of a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273. doi: 10.1063/1.526074. Google Scholar

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. doi: 10.1090/cln/010. Google Scholar

[3]

R. Coifman and Y. Meyer, Ondelettes et Opérateurs. Ⅲ. Opérateurs Multilinéaires, Actualités Mathématiques. Hermann, Paris, 1991. Google Scholar

[4]

P. Deift and X. Zhou, Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl. Math., 56 (2003), 1029-1077. doi: 10.1002/cpa.3034. Google Scholar

[5]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, (2009), 414-432. doi: 10.1093/imrn/rnn135. Google Scholar

[6]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl.(9), 97 (2012), 505-543. doi: 10.1016/j.matpur.2011.09.008. Google Scholar

[7]

N. Hayashi and P. Naumkin, Asymptotics for large time of solutions to nonlinear Schrödinger and Hartree equations, Amer. J. Math., 20 (1998), 369-389. doi: 10.1353/ajm.1998.0011. Google Scholar

[8]

N. Hayashi and P. Naumkin, Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities, Int. J. Pure Appl. Math., 3 (2002), 255-273. Google Scholar

[9]

N. Hayashi and P. Naumkin, Large time behavior for the cubic nonlinear Schrödinger equation, Canad. J. Math., 54 (2002), 1065-1085. doi: 10.4153/CJM-2002-039-3. Google Scholar

[10]

N. Hayashi and P. Naumkin, On the asymptotics for cubic nonlinear Schrödinger equations, Complex Var. Theory Appl., 49 (2004), 339-373. doi: 10.1080/02781070410001710353. Google Scholar

[11]

N. Hayashi and P. Naumkin, Nongauge invariant cubic nonlinear Schrödinger equations, Pac. J. Appl. Math., 1 (2008), 1-16. Google Scholar

[12]

N. Hayashi and P. Naumkin, Global existence for the cubic nonlinear Schrödinger equation in lower order Sobolev spaces, Differential Integral Equations, 24 (2011), 801-828. Google Scholar

[13]

N. Hayashi and P. Naumkin, Logarithmic time decay for the cubic nonlinear Schrödinger equations, Int Math Res Notices, 2015 (2015), 5604-5643. doi: 10.1093/imrn/rnu102. Google Scholar

[14]

M. Ifrim and D. Tataru, Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, 28 (2015), 2661-2675. doi: 10.1088/0951-7715/28/8/2661. Google Scholar

[15]

F. John, Existence for large times of strict solutions of nonlinear wave equations in three space dimensions for small initial data, Comm. Pure Appl. Math., 40 (1987), 79-109. doi: 10.1002/cpa.3160400104. Google Scholar

[16]

F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., 37 (1984), 443-455. doi: 10.1002/cpa.3160370403. Google Scholar

[17]

J. Kato and F. Pusateri, A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differential Integral Equations, 24 (2011), 923-940. Google Scholar

[18]

H. Lindblad and A. Soffer, Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity, 19 (2006), 345-353. doi: 10.1088/0951-7715/19/2/006. Google Scholar

[19]

C. Muscalu, J. Pipher, T. Tao and C. Thiele, A Short Proof of the Coifman-Meyer Multilinear Theorem, http://www.math.brown.edu/~jpipher/trilogy1.pdfGoogle Scholar

[20]

P. Naumkin, Cubic derivative nonlinear Schrödinger equations, SUT J. Math., 36 (2000), 9-42. Google Scholar

[21]

F. Pusateri and J. Shatah, Space-time resonances and the null condition for first-order systems of wave equations, Comm. Pure Appl. Math., 66 (2013), 1495-1540. doi: 10.1002/cpa.21461. Google Scholar

[22]

Y. Sagawa and H. Sunagawa, The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension, Discrete Contin. Dyn. Syst., 36 (2016), 5743-5761. doi: 10.3934/dcds.2016052. Google Scholar

[23]

A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423. doi: 10.1080/03605300600910316. Google Scholar

[24]

H. Sunagawa, Lower bounds of the lifespan of small data solutions to the nonlinear Schrödinger equations, Osaka J. Math., 43 (2006), 771-789. Google Scholar

[25]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc., 11 (1984), 186-188. doi: 10.1090/S0273-0979-1984-15263-7. Google Scholar

show all references

References:
[1]

J. Barab, Nonexistence of asymptotically free solutions of a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273. doi: 10.1063/1.526074. Google Scholar

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. doi: 10.1090/cln/010. Google Scholar

[3]

R. Coifman and Y. Meyer, Ondelettes et Opérateurs. Ⅲ. Opérateurs Multilinéaires, Actualités Mathématiques. Hermann, Paris, 1991. Google Scholar

[4]

P. Deift and X. Zhou, Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl. Math., 56 (2003), 1029-1077. doi: 10.1002/cpa.3034. Google Scholar

[5]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, (2009), 414-432. doi: 10.1093/imrn/rnn135. Google Scholar

[6]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl.(9), 97 (2012), 505-543. doi: 10.1016/j.matpur.2011.09.008. Google Scholar

[7]

N. Hayashi and P. Naumkin, Asymptotics for large time of solutions to nonlinear Schrödinger and Hartree equations, Amer. J. Math., 20 (1998), 369-389. doi: 10.1353/ajm.1998.0011. Google Scholar

[8]

N. Hayashi and P. Naumkin, Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities, Int. J. Pure Appl. Math., 3 (2002), 255-273. Google Scholar

[9]

N. Hayashi and P. Naumkin, Large time behavior for the cubic nonlinear Schrödinger equation, Canad. J. Math., 54 (2002), 1065-1085. doi: 10.4153/CJM-2002-039-3. Google Scholar

[10]

N. Hayashi and P. Naumkin, On the asymptotics for cubic nonlinear Schrödinger equations, Complex Var. Theory Appl., 49 (2004), 339-373. doi: 10.1080/02781070410001710353. Google Scholar

[11]

N. Hayashi and P. Naumkin, Nongauge invariant cubic nonlinear Schrödinger equations, Pac. J. Appl. Math., 1 (2008), 1-16. Google Scholar

[12]

N. Hayashi and P. Naumkin, Global existence for the cubic nonlinear Schrödinger equation in lower order Sobolev spaces, Differential Integral Equations, 24 (2011), 801-828. Google Scholar

[13]

N. Hayashi and P. Naumkin, Logarithmic time decay for the cubic nonlinear Schrödinger equations, Int Math Res Notices, 2015 (2015), 5604-5643. doi: 10.1093/imrn/rnu102. Google Scholar

[14]

M. Ifrim and D. Tataru, Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, 28 (2015), 2661-2675. doi: 10.1088/0951-7715/28/8/2661. Google Scholar

[15]

F. John, Existence for large times of strict solutions of nonlinear wave equations in three space dimensions for small initial data, Comm. Pure Appl. Math., 40 (1987), 79-109. doi: 10.1002/cpa.3160400104. Google Scholar

[16]

F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., 37 (1984), 443-455. doi: 10.1002/cpa.3160370403. Google Scholar

[17]

J. Kato and F. Pusateri, A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differential Integral Equations, 24 (2011), 923-940. Google Scholar

[18]

H. Lindblad and A. Soffer, Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity, 19 (2006), 345-353. doi: 10.1088/0951-7715/19/2/006. Google Scholar

[19]

C. Muscalu, J. Pipher, T. Tao and C. Thiele, A Short Proof of the Coifman-Meyer Multilinear Theorem, http://www.math.brown.edu/~jpipher/trilogy1.pdfGoogle Scholar

[20]

P. Naumkin, Cubic derivative nonlinear Schrödinger equations, SUT J. Math., 36 (2000), 9-42. Google Scholar

[21]

F. Pusateri and J. Shatah, Space-time resonances and the null condition for first-order systems of wave equations, Comm. Pure Appl. Math., 66 (2013), 1495-1540. doi: 10.1002/cpa.21461. Google Scholar

[22]

Y. Sagawa and H. Sunagawa, The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension, Discrete Contin. Dyn. Syst., 36 (2016), 5743-5761. doi: 10.3934/dcds.2016052. Google Scholar

[23]

A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423. doi: 10.1080/03605300600910316. Google Scholar

[24]

H. Sunagawa, Lower bounds of the lifespan of small data solutions to the nonlinear Schrödinger equations, Osaka J. Math., 43 (2006), 771-789. Google Scholar

[25]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc., 11 (1984), 186-188. doi: 10.1090/S0273-0979-1984-15263-7. Google Scholar

[1]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[2]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[3]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[4]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[5]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[6]

James Nolen, Jack Xin. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1217-1234. doi: 10.3934/dcds.2005.13.1217

[7]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[8]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[9]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[10]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[11]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[12]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[13]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[14]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[15]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[16]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[17]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[18]

J. Colliander, Tristan Roy. Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on $R^2$. Communications on Pure & Applied Analysis, 2011, 10 (2) : 397-414. doi: 10.3934/cpaa.2011.10.397

[19]

Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51

[20]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (27)
  • HTML views (11)
  • Cited by (0)

Other articles
by authors

[Back to Top]