April  2017, 37(4): 2115-2140. doi: 10.3934/dcds.2017091

Degenerate with respect to parameters fold-Hopf bifurcations

Department of Mathematics, Politehnica University of Timisoara, Pta Victoriei, No. 2,300006, Timisoara, Timis, Romania

Received  May 2016 Revised  November 2016 Published  December 2016

Fund Project: The author is supported by grant FP7-PEOPLE-2012-IRSES-316338.

In this work we study degenerate with respect to parameters fold-Hopfbifurcations in three-dimensional differential systems. Such degeneraciesarise when the transformations between parameters leading to a normal formare not regular at some points in the parametric space. We obtain newgeneric results for the dynamics of the systems in such a degenerateframework. The bifurcation diagrams we obtained show that in a degeneratecontext the dynamics may be completely different than in a non-degenerateframework.

Citation: Gheorghe Tigan. Degenerate with respect to parameters fold-Hopf bifurcations. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2115-2140. doi: 10.3934/dcds.2017091
References:
[1]

G. Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.  doi: 10.1142/S0218127499001024.  Google Scholar

[2]

J.D. Crawford and E. Knobloch, Classification and unfolding of degenerate Hopf bifurcations with O(2) symmetry: No distinguished parameter, Physica D: Nonlinear Phenomena, 31 (1988), 1-48.  doi: 10.1016/0167-2789(88)90011-5.  Google Scholar

[3]

F. DumortierS. IbanezH. Kokubu and C. Simo, About the unfolding of a Hopf-zero singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 4435-4471.  doi: 10.3934/dcds.2013.33.4435.  Google Scholar

[4]

I. Garcia and C. Valls, The three-dimensional center problem for the zero-Hopf singularity, Discrete and Continuous Dynamical Systems -Series A, 36 (2016), 2027-2046.  doi: 10.3934/dcds.2016.36.2027.  Google Scholar

[5]

X. HeC. Li and Y. Shu, Triple-zero bifurcation in van der Pol's oscillator with delayed feedback, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5229-5239.  doi: 10.1016/j.cnsns.2012.05.001.  Google Scholar

[6]

J. Huang and Y. Zhao, Bifurcation of isolated closed orbits from degenerated singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 2861-2883.  doi: 10.3934/dcds.2013.33.2861.  Google Scholar

[7]

W. Jiang and B. Niu, On the coexistence of periodic or quasi-periodic oscillations near a Hopf-pitchfork bifurcation in NFDE, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 464-477.  doi: 10.1016/j.cnsns.2012.08.004.  Google Scholar

[8]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory Springer-Verlag, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[9]

J. S. W. LambM.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbb{R}^{3}$, Journal of Differential Equations, 219 (2005), 78-115.  doi: 10.1016/j.jde.2005.02.019.  Google Scholar

[10]

C. Lazureanu and T. Binzar, On the symmetries of a Rikitake type system, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 529-533.  doi: 10.1016/j.crma.2012.04.016.  Google Scholar

[11]

C. Lazureanu and T. Binzar, On a new chaotic system, Mathematical Methods in the Applied Sciences, 38 (2015), 1631-1641.  doi: 10.1002/mma.3174.  Google Scholar

[12]

J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2012), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

[13]

M. Perez-Molina and M. F. Perez-Polo, Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5172-5188.  doi: 10.1016/j.cnsns.2012.06.004.  Google Scholar

[14]

E. PonceJ. Ros and E. Vela, Unfolding the fold-Hopf bifurcation in piecewise linear continuous differential systems with symmetry, Physica D: Nonlinear Phenomena, 250 (2013), 34-46.  doi: 10.1016/j.physd.2013.01.010.  Google Scholar

[15]

R. QesmiM. Ait Babram and M. L. Hbid, Center manifolds and normal forms for a class of retarded functional differential equations with parameter associated with Fold-Hopf singularity, Applied Mathematics and Computation, 181 (2006), 220-246.  doi: 10.1016/j.amc.2006.01.030.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.  doi: 10.1103/PhysRevE.50.R647.  Google Scholar

[17]

G. Tigan, Analysis of a dynamical system derived from the Lorenz system, Scientific Bulletin of the Politehnica University of Timisoara, 50 (2005), 61-72.   Google Scholar

[18]

G. Tigan and D. Opris, Analysis of a 3D dynamical system, Chaos, Solitons and Fractals, 36 (2008), 1315-1319.  doi: 10.1016/j.chaos.2006.07.052.  Google Scholar

[19]

G. Tigan, Analysis of degenerate fold-Hopf bifurcation in a three-dimensional differential system, Qualitative Theory of Dynamical Systems, to appear. Google Scholar

[20]

P. D. Woods and A. R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Physica D: Nonlinear Phenomena, 129 (1999), 147-170.  doi: 10.1016/S0167-2789(98)00309-1.  Google Scholar

show all references

References:
[1]

G. Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.  doi: 10.1142/S0218127499001024.  Google Scholar

[2]

J.D. Crawford and E. Knobloch, Classification and unfolding of degenerate Hopf bifurcations with O(2) symmetry: No distinguished parameter, Physica D: Nonlinear Phenomena, 31 (1988), 1-48.  doi: 10.1016/0167-2789(88)90011-5.  Google Scholar

[3]

F. DumortierS. IbanezH. Kokubu and C. Simo, About the unfolding of a Hopf-zero singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 4435-4471.  doi: 10.3934/dcds.2013.33.4435.  Google Scholar

[4]

I. Garcia and C. Valls, The three-dimensional center problem for the zero-Hopf singularity, Discrete and Continuous Dynamical Systems -Series A, 36 (2016), 2027-2046.  doi: 10.3934/dcds.2016.36.2027.  Google Scholar

[5]

X. HeC. Li and Y. Shu, Triple-zero bifurcation in van der Pol's oscillator with delayed feedback, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5229-5239.  doi: 10.1016/j.cnsns.2012.05.001.  Google Scholar

[6]

J. Huang and Y. Zhao, Bifurcation of isolated closed orbits from degenerated singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 2861-2883.  doi: 10.3934/dcds.2013.33.2861.  Google Scholar

[7]

W. Jiang and B. Niu, On the coexistence of periodic or quasi-periodic oscillations near a Hopf-pitchfork bifurcation in NFDE, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 464-477.  doi: 10.1016/j.cnsns.2012.08.004.  Google Scholar

[8]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory Springer-Verlag, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[9]

J. S. W. LambM.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbb{R}^{3}$, Journal of Differential Equations, 219 (2005), 78-115.  doi: 10.1016/j.jde.2005.02.019.  Google Scholar

[10]

C. Lazureanu and T. Binzar, On the symmetries of a Rikitake type system, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 529-533.  doi: 10.1016/j.crma.2012.04.016.  Google Scholar

[11]

C. Lazureanu and T. Binzar, On a new chaotic system, Mathematical Methods in the Applied Sciences, 38 (2015), 1631-1641.  doi: 10.1002/mma.3174.  Google Scholar

[12]

J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2012), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

[13]

M. Perez-Molina and M. F. Perez-Polo, Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5172-5188.  doi: 10.1016/j.cnsns.2012.06.004.  Google Scholar

[14]

E. PonceJ. Ros and E. Vela, Unfolding the fold-Hopf bifurcation in piecewise linear continuous differential systems with symmetry, Physica D: Nonlinear Phenomena, 250 (2013), 34-46.  doi: 10.1016/j.physd.2013.01.010.  Google Scholar

[15]

R. QesmiM. Ait Babram and M. L. Hbid, Center manifolds and normal forms for a class of retarded functional differential equations with parameter associated with Fold-Hopf singularity, Applied Mathematics and Computation, 181 (2006), 220-246.  doi: 10.1016/j.amc.2006.01.030.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.  doi: 10.1103/PhysRevE.50.R647.  Google Scholar

[17]

G. Tigan, Analysis of a dynamical system derived from the Lorenz system, Scientific Bulletin of the Politehnica University of Timisoara, 50 (2005), 61-72.   Google Scholar

[18]

G. Tigan and D. Opris, Analysis of a 3D dynamical system, Chaos, Solitons and Fractals, 36 (2008), 1315-1319.  doi: 10.1016/j.chaos.2006.07.052.  Google Scholar

[19]

G. Tigan, Analysis of degenerate fold-Hopf bifurcation in a three-dimensional differential system, Qualitative Theory of Dynamical Systems, to appear. Google Scholar

[20]

P. D. Woods and A. R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Physica D: Nonlinear Phenomena, 129 (1999), 147-170.  doi: 10.1016/S0167-2789(98)00309-1.  Google Scholar

$s=-1,$ $\theta _{0}<0,$ $ \beta _{2}<0, $ "d2" to $s=-1,$ $\theta _{0}<0,$ $\beta _{2}>0,$ "d3" to $s=-1,$ $\theta _{0}>0,$ $\beta _{2}<0,$ "d4" to $s=-1,$ $\theta _{0}>0,$ $\beta _{2}>0,$ "d5" to $ s=1,$ $\theta _{0}>0,$ $\beta _{2}>0,$ "d6" to $s=1,$ $ \theta _{0}>0,$ $\beta _{2}<0,$ "d7" to $s=1,$ $ \theta _{0}<0,$ $\beta _{2}<0$ and "d8" to $s=1,$ $\theta _{0}<0,$ $\beta_{2}>0$">Figure 2.  Generic phase portraits of the 2D system (38) on the bifurcation curve $\delta :\beta _{1}+\xi _{3}^{2}=0; $ "d1" corresponds to $s=-1,$ $\theta _{0}<0,$ $ \beta _{2}<0, $ "d2" to $s=-1,$ $\theta _{0}<0,$ $\beta _{2}>0,$ "d3" to $s=-1,$ $\theta _{0}>0,$ $\beta _{2}<0,$ "d4" to $s=-1,$ $\theta _{0}>0,$ $\beta _{2}>0,$ "d5" to $ s=1,$ $\theta _{0}>0,$ $\beta _{2}>0,$ "d6" to $s=1,$ $ \theta _{0}>0,$ $\beta _{2}<0,$ "d7" to $s=1,$ $ \theta _{0}<0,$ $\beta _{2}<0$ and "d8" to $s=1,$ $\theta _{0}<0,$ $\beta_{2}>0$
Figure 1.  Generic phase portraits of the 2D system (38) at $ \alpha_1=\alpha_2=0$ and (a) $s=+1,\theta_0>0,$ (b) $s=+1, \theta_0<0,$ (c) $s=-1,\theta_0>0,$ (d) $s=-1,\theta _0<0$
Figure 3.  Generic phase portraits of the $2D$ system (38)
Figure 4.  Generic phase portraits of the $2D$ system (38)
Figure 5.  Bifurcation diagrams for: a) $\theta _{0}>0$ and $s=+1,$ (left); b) $\theta _{0}<0$ and $s=-1$ (right)
$ \alpha _{1}<0,$ respectively, "snun" for $\alpha _{1}>0$">Figure 6.  Bifurcation diagrams for: a) $0<\theta _{0}\leq \frac{1}{2}$ and $s=-1,$ (left); b) $\theta _{0}>\frac{1}{2}$ and $s=-1$ (right). The generic portraits on the lines $k^{1},k^{2}$ are the same as in their neighborhood corresponding to $A_{3}$ a node, namely "nssn" for $ \alpha _{1}<0,$ respectively, "snun" for $\alpha _{1}>0$
Figure 7.  Bifurcation diagram for $\theta _{0}<0$ and $s=+1.$ The generic portraits on the lines $k^{1},k^{2}$ are the same as in their neighborhood corresponding to $A_{3}$ a node, namely "ssun" or "sssn"
Figure 8.  The point $A_3$ in 2D and its corresponding limit cycle $C$ in 3D
Figure 9.  The circle in 2D and its corresponding torus in 3D
Figure 10.  The heteroclinic orbit in 2D and its corresponding sphere in 3D
$\beta _{1}=-0.5,\beta _{2}=-0.001,$ $s=-1,$ $ \theta _{0}=1;$ "sn" $\beta _{1}=-0.01,\beta _{2}=-0.2,$ $s=1,$ $\theta _{0}=1;$ "ss" $\beta _{1}=-0.12, \beta _{2}=-0.14,$ $s=-1,$ $\theta _{0}=-1;$ "sns" $ \beta _{1}=-0.01,\beta _{2}=-0.24,$ $s=-1,$ $\theta _{0}=-1,$ "snuf" $\beta _{1}=-0.01,\beta _{2}=-0.24,$ $s=-1,$ $ \theta _{0}=1;$ "sssn" $\beta _{1}=-0.01,\beta _{2}=-0.1,$ $s=1,$ $\theta _{0}=-1$">Figure 11.  Generic phase portraits of the 3D system. In all cases $ \omega_1=0.1$ and $\omega_2=-0.1$ The other numeric values are as follows: "nn" $\beta _{1}=-0.5,\beta _{2}=-0.001,$ $s=-1,$ $ \theta _{0}=1;$ "sn" $\beta _{1}=-0.01,\beta _{2}=-0.2,$ $s=1,$ $\theta _{0}=1;$ "ss" $\beta _{1}=-0.12, \beta _{2}=-0.14,$ $s=-1,$ $\theta _{0}=-1;$ "sns" $ \beta _{1}=-0.01,\beta _{2}=-0.24,$ $s=-1,$ $\theta _{0}=-1,$ "snuf" $\beta _{1}=-0.01,\beta _{2}=-0.24,$ $s=-1,$ $ \theta _{0}=1;$ "sssn" $\beta _{1}=-0.01,\beta _{2}=-0.1,$ $s=1,$ $\theta _{0}=-1$
$\beta _{1}=-0.01,\beta _{2}=0.02,$ $ s=1,$ $\theta _{0}=-1;$ "ssc" $\beta _{1}=-0.01, \beta _{2}=-0.002, $ $s=1,$ $\theta _{0}=-1;$ "ssh" $\beta _{1}=-0.01,\beta _{2}=-0.0028,$ $s=1,$ $\theta _{0}=-1$ and "nns" $\beta _{1}=-0.01,\beta _{2}=-0.011,$ $s=1,$ $ \theta _{0}=1$">Figure 12.  Generic phase portraits of the 3D system. In all cases $ \omega _{1}=0.1$ and $\omega _{2}=-0.1$ The other numeric values are as follows: "ssuf" $\beta _{1}=-0.01,\beta _{2}=0.02,$ $ s=1,$ $\theta _{0}=-1;$ "ssc" $\beta _{1}=-0.01, \beta _{2}=-0.002, $ $s=1,$ $\theta _{0}=-1;$ "ssh" $\beta _{1}=-0.01,\beta _{2}=-0.0028,$ $s=1,$ $\theta _{0}=-1$ and "nns" $\beta _{1}=-0.01,\beta _{2}=-0.011,$ $s=1,$ $ \theta _{0}=1$
[1]

Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545

[2]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[3]

Yancong Xu, Deming Zhu, Xingbo Liu. Bifurcations of multiple homoclinics in general dynamical systems. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 945-963. doi: 10.3934/dcds.2011.30.945

[4]

Ruyuan Zhang. Hopf bifurcations of ODE systems along the singular direction in the parameter plane. Communications on Pure & Applied Analysis, 2005, 4 (2) : 445-461. doi: 10.3934/cpaa.2005.4.445

[5]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[6]

Lana Horvat Dmitrović. Box dimension and bifurcations of one-dimensional discrete dynamical systems. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1287-1307. doi: 10.3934/dcds.2012.32.1287

[7]

Xingwu Chen, Weinian Zhang. Normal forms of planar switching systems. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6715-6736. doi: 10.3934/dcds.2016092

[8]

Niclas Kruff, Sebastian Walcher. Coordinate-independent criteria for Hopf bifurcations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1319-1340. doi: 10.3934/dcdss.2020075

[9]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[10]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[11]

C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289

[12]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[13]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[14]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025

[15]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[16]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[17]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[18]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[19]

Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047

[20]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (275)
  • HTML views (1877)
  • Cited by (5)

Other articles
by authors

[Back to Top]