\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Suspension of the billiard maps in the Lazutkin's coordinate

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • In this paper we proved that under the Lazutkin's coordinate, the billiard map can be interpolated by a time-1 flow of a Hamiltonian $ H(x,p,t) $ which can be formally expressed by

    $H(x,p,t)=p^{3/2}+p^{5/2}V(x,p^{1/2},t),\;\;(x,p,t)∈\mathbb{T}×[0,+∞)×\mathbb{T},$

    where $ V(·,·,·) $ is $ C^{r-5} $ smooth if the convex billiard boundary is $ C^r $ smooth. Benefit from this suspension we can construct transitive trajectories between two adjacent caustics under a variational framework.

    Mathematics Subject Classification: Primary:37J50;Secondary:70H08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The reflective angle keeps equal to the incident angle for every rebound

    Figure 2.   

  • [1] P. Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier, Grenoble, 52 (2002), 1533-1568.  doi: 10.5802/aif.1924.
    [2] C.-Q. Cheng and J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geometry, 67 (2004), 457-517. 
    [3] C.-Q. Cheng and J. Yan, Arnold diffusion in hamiltonian systems: A priori unstable case, J. Differential Geometry, 82 (2009), 229-277. 
    [4] R. Douady, Une démonstration directe de lé quivalence des théorémes de tores invariants pour difféomorphismes et champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), 201-204. 
    [5] C. Golé, Symplectic Twist Maps: Global Variational Techniques, Advanced Series in Nonlinear Dynamics, World Scientific Pub Co Inc, 2001. doi: 10.1142/9789812810762.
    [6] V. Lazutkin, The existence of caustics for a billiard problem in a convex domain, Izv. Akad. Nauk SSSR, SerMat. Tom, 37 (1973), 186-216. 
    [7] R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9 (1996), 273-310.  doi: 10.1088/0951-7715/9/2/002.
    [8] J. Mather, Glancing billiards, Ergod. Th. Dyn. Sys., 2 (1982), 397-403.  doi: 10.1017/S0143385700001681.
    [9] J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Mathematische Zeitschrift, 207 (1991), 169-207.  doi: 10.1007/BF02571383.
    [10] J. Mather, Variational construction of connecting orbits, Annales de l'institut Fourier, 43 (1993), 1349-1386.  doi: 10.5802/aif.1377.
    [11] J. Moser, Monotone twist mappings and the calculs of variations, Ergodic Theory and Dyn. Syst., 6 (1986), 401-413.  doi: 10.1017/S0143385700003588.
    [12] J. Moser, Selected Chapters in the Calculus of Variations, Lectures in Mathematics. ETH Zürich, Birkhäuser, 2003. doi: 10.1007/978-3-0348-8057-2.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(355) PDF downloads(155) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return