In this paper we proved that under the Lazutkin's coordinate, the billiard map can be interpolated by a time-1 flow of a Hamiltonian $ H(x,p,t) $ which can be formally expressed by
$H(x,p,t)=p^{3/2}+p^{5/2}V(x,p^{1/2},t),\;\;(x,p,t)∈\mathbb{T}×[0,+∞)×\mathbb{T},$
where $ V(·,·,·) $ is $ C^{r-5} $ smooth if the convex billiard boundary is $ C^r $ smooth. Benefit from this suspension we can construct transitive trajectories between two adjacent caustics under a variational framework.
Citation: |
[1] |
P. Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier, Grenoble, 52 (2002), 1533-1568.
doi: 10.5802/aif.1924.![]() ![]() ![]() |
[2] |
C.-Q. Cheng and J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geometry, 67 (2004), 457-517.
![]() ![]() |
[3] |
C.-Q. Cheng and J. Yan, Arnold diffusion in hamiltonian systems: A priori unstable case, J. Differential Geometry, 82 (2009), 229-277.
![]() ![]() |
[4] |
R. Douady, Une démonstration directe de lé quivalence des théorémes de tores invariants pour difféomorphismes et champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), 201-204.
![]() ![]() |
[5] |
C. Golé,
Symplectic Twist Maps: Global Variational Techniques, Advanced Series in Nonlinear Dynamics, World Scientific Pub Co Inc, 2001.
doi: 10.1142/9789812810762.![]() ![]() ![]() |
[6] |
V. Lazutkin, The existence of caustics for a billiard problem in a convex domain, Izv. Akad. Nauk SSSR, SerMat. Tom, 37 (1973), 186-216.
![]() ![]() |
[7] |
R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9 (1996), 273-310.
doi: 10.1088/0951-7715/9/2/002.![]() ![]() ![]() |
[8] |
J. Mather, Glancing billiards, Ergod. Th. Dyn. Sys., 2 (1982), 397-403.
doi: 10.1017/S0143385700001681.![]() ![]() ![]() |
[9] |
J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Mathematische Zeitschrift, 207 (1991), 169-207.
doi: 10.1007/BF02571383.![]() ![]() ![]() |
[10] |
J. Mather, Variational construction of connecting orbits, Annales de l'institut Fourier, 43 (1993), 1349-1386.
doi: 10.5802/aif.1377.![]() ![]() ![]() |
[11] |
J. Moser, Monotone twist mappings and the calculs of variations, Ergodic Theory and Dyn. Syst., 6 (1986), 401-413.
doi: 10.1017/S0143385700003588.![]() ![]() ![]() |
[12] |
J. Moser,
Selected Chapters in the Calculus of Variations, Lectures in Mathematics. ETH Zürich, Birkhäuser, 2003.
doi: 10.1007/978-3-0348-8057-2.![]() ![]() ![]() |