\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition

Abstract Full Text(HTML) Related Papers Cited by
  • The purpose of this paper is to study $T$-periodic solutions to

    $\left\{ \begin{array}{*{35}{l}} [{{(-{{\Delta }_{x}}+{{m}^{2}})}^{s}}-{{m}^{2s}}]u=f(x,u) & \text{ in }{{(0,T)}^{N}} \\ u(x+T{{e}_{i}})=u(x) & \text{for all }x\text{ }\in {{\mathbb{R}}^{N}},i=1,\ldots ,N \\\end{array} \right. \tag{1}$

    where $s∈ (0,1)$, $N> 2s$, $T>0$, $m> 0$ and $f(x,u)$ is a continuous function, $T$ -periodic in $x$ and satisfying a suitable growth assumption weaker than the Ambrosetti-Rabinowitz condition.

    The nonlocal operator $(-Δ_{x}+m^{2})^{s}$ can be realized as the Dirichlet to Neumann map for a degenerate elliptic problem posed on the half-cylinder $\mathcal{S}_{T}=(0,T)^{N}× (0,∞)$. By using a variant of the Linking Theorem, we show that the extended problem in $\mathcal{S}_{T}$ admits a nontrivial solution $v(x,ξ)$ which is $T$ -periodic in $x$. Moreover, by a procedure of limit as $m\to 0$, we prove the existence of a nontrivial solution to (1) with $m=0$.

    Mathematics Subject Classification: Primary: 49J35, 35A15, 35R11; Secondary: 35J60, 35S05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.
    [2] V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. TMA, 120 (2015), 262-284.  doi: 10.1016/j.na.2015.03.017.
    [3] V. Ambrosio, Periodic solutions for the non-local operator pseudo-relativistic $(-Δ+m^{2})^{s}-m^{2s}$ with $m≥q 0$, Topol. Methods Nonlinear Anal. (2016), DOI: 10.12775/TMNA.2016.063.
    [4] D. Applebaum, Lévy Processes and Stochastic Calculus Cambridge Studies in advanced mathematics, Cambridge, 2004.
    [5] P. BilerG. Karch and W. A. Woyczynski, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 613-637.  doi: 10.1016/S0294-1449(01)00080-4.
    [6] X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732. 
    [7] L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [8] L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240.  doi: 10.1007/s00526-010-0359-6.
    [9] G. Cerami, Un criterio di esistenza per i punti critici su variet{{á}} illimitate, Rend. Acad. Sci. Let. Ist. Lombardo, 112 (1978), 332-336. 
    [10] R. Cont and P. Tankov, Financial Modelling with Jump Processes Chapman and Hall/CRC Financ. Math. Ser. , Chapman and Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203485217.
    [11] D. G. Costa and C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23 (1994), 1401-1412.  doi: 10.1016/0362-546X(94)90135-X.
    [12] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Trascendental Functions McGraw-Hill vol. 1, 2, New York-Toronto-London, 1953.
    [13] J. FröhlichB. L. G. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30. 
    [14] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect.A, 129 (1999), 787-809.  doi: 10.1017/S0308210500013147.
    [15] G. Li and C. Wang, The existence of a nontrivial solution to a nonlinear elliptic problem of Linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn. Math., 36 (2011), 461-480.  doi: 10.5186/aasfm.2011.3627.
    [16] E. H. Lieb and H. T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174. 
    [17] S. B. Liu, On superlinear problems without Ambrosetti-Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.  doi: 10.1016/j.na.2010.04.016.
    [18] O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638.  doi: 10.1016/j.jde.2008.02.035.
    [19] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations CBMS Regional Conference Series in Mathematics, 1986. doi: 10.1090/cbms/065.
    [20] M. Schechter and W. Zou, Superlinear problems, Pacific J. Math., 214 (2004), 145-160. 
    [21] L. Silvestre, Regularity of the obstacle problem for a fractional power of the {L}aplace operator, Comm. Pure Appl. Math., 60 (2006), 67-112.  doi: 10.1002/cpa.20153.
    [22] Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.
    [23] J. J. Stoker, Water Waves: The Mathematical Theory with Applications Pure Appl. Math. , vol. IV, Interscience Publishers, Inc. , New York, 1957. doi: 10.1002/9781118033159.
    [24] M. Struwe, Variational methods: Application to Nonlinear Partial Differential Equations and Hamiltonian Systems Springer-Verlag, Berlin, 1990.
    [25] M. Willem, Minimax Theorems Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc. , Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.
    [26] A. Zygmund, Trigonometric Series Vol. 1, 2 Cambridge University Press, Cambridge, 2002.
  • 加载中
SHARE

Article Metrics

HTML views(271) PDF downloads(211) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return