The purpose of this paper is to study $T$-periodic solutions to
$\left\{ \begin{array}{*{35}{l}} [{{(-{{\Delta }_{x}}+{{m}^{2}})}^{s}}-{{m}^{2s}}]u=f(x,u) & \text{ in }{{(0,T)}^{N}} \\ u(x+T{{e}_{i}})=u(x) & \text{for all }x\text{ }\in {{\mathbb{R}}^{N}},i=1,\ldots ,N \\\end{array} \right. \tag{1}$
where $s∈ (0,1)$, $N> 2s$, $T>0$, $m> 0$ and $f(x,u)$ is a continuous function, $T$ -periodic in $x$ and satisfying a suitable growth assumption weaker than the Ambrosetti-Rabinowitz condition.
The nonlocal operator $(-Δ_{x}+m^{2})^{s}$ can be realized as the Dirichlet to Neumann map for a degenerate elliptic problem posed on the half-cylinder $\mathcal{S}_{T}=(0,T)^{N}× (0,∞)$. By using a variant of the Linking Theorem, we show that the extended problem in $\mathcal{S}_{T}$ admits a nontrivial solution $v(x,ξ)$ which is $T$ -periodic in $x$. Moreover, by a procedure of limit as $m\to 0$, we prove the existence of a nontrivial solution to (1) with $m=0$.
Citation: |
[1] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7.![]() ![]() |
[2] |
V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. TMA, 120 (2015), 262-284.
doi: 10.1016/j.na.2015.03.017.![]() ![]() |
[3] |
V. Ambrosio, Periodic solutions for the non-local operator pseudo-relativistic $(-Δ+m^{2})^{s}-m^{2s}$ with $m≥q 0$,
Topol. Methods Nonlinear Anal. (2016), DOI: 10.12775/TMNA.2016.063.
![]() |
[4] |
D. Applebaum,
Lévy Processes and Stochastic Calculus Cambridge Studies in advanced mathematics, Cambridge, 2004.
![]() ![]() |
[5] |
P. Biler, G. Karch and W. A. Woyczynski, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 613-637.
doi: 10.1016/S0294-1449(01)00080-4.![]() ![]() |
[6] |
X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.
![]() |
[7] |
L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() |
[8] |
L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240.
doi: 10.1007/s00526-010-0359-6.![]() ![]() |
[9] |
G. Cerami, Un criterio di esistenza per i punti critici su variet{{á}} illimitate, Rend. Acad. Sci. Let. Ist. Lombardo, 112 (1978), 332-336.
![]() |
[10] |
R. Cont and P. Tankov,
Financial Modelling with Jump Processes Chapman and Hall/CRC Financ. Math. Ser. , Chapman and Hall/CRC, Boca Raton, FL, 2004.
doi: 10.1201/9780203485217.![]() ![]() ![]() |
[11] |
D. G. Costa and C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23 (1994), 1401-1412.
doi: 10.1016/0362-546X(94)90135-X.![]() ![]() |
[12] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi,
Higher Trascendental Functions McGraw-Hill vol. 1, 2, New York-Toronto-London, 1953.
![]() ![]() |
[13] |
J. Fröhlich, B. L. G. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.
![]() |
[14] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect.A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() |
[15] |
G. Li and C. Wang, The existence of a nontrivial solution to a nonlinear elliptic problem of Linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn. Math., 36 (2011), 461-480.
doi: 10.5186/aasfm.2011.3627.![]() ![]() |
[16] |
E. H. Lieb and H. T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174.
![]() |
[17] |
S. B. Liu, On superlinear problems without Ambrosetti-Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
doi: 10.1016/j.na.2010.04.016.![]() ![]() |
[18] |
O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638.
doi: 10.1016/j.jde.2008.02.035.![]() ![]() |
[19] |
P. H. Rabinowitz,
Minimax Methods in Critical Point Theory with Applications to Differential Equations CBMS Regional Conference Series in Mathematics, 1986.
doi: 10.1090/cbms/065.![]() ![]() ![]() |
[20] |
M. Schechter and W. Zou, Superlinear problems, Pacific J. Math., 214 (2004), 145-160.
![]() |
[21] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the {L}aplace operator, Comm. Pure Appl. Math., 60 (2006), 67-112.
doi: 10.1002/cpa.20153.![]() ![]() |
[22] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020.![]() ![]() |
[23] |
J. J. Stoker,
Water Waves: The Mathematical Theory with Applications Pure Appl. Math. , vol. IV, Interscience Publishers, Inc. , New York, 1957.
doi: 10.1002/9781118033159.![]() ![]() ![]() |
[24] |
M. Struwe,
Variational methods: Application to Nonlinear Partial Differential Equations and Hamiltonian Systems Springer-Verlag, Berlin, 1990.
![]() ![]() |
[25] |
M. Willem,
Minimax Theorems Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc. , Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[26] |
A. Zygmund,
Trigonometric Series Vol. 1, 2 Cambridge University Press, Cambridge, 2002.
![]() ![]() |