May  2017, 37(5): 2301-2313. doi: 10.3934/dcds.2017101

Control systems on flag manifolds and their chain control sets

1. 

Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile and Departamento de Matemáticas Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile

2. 

Imecc -Unicamp, Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz 13083-859, Campinas -SP, Brasil

Received  June 2016 Revised  December 2016 Published  February 2017

Fund Project: The first author was supported by Conicyt, Proyecto Fondecyt n°1150292. The second author was supported by FAPESP grants 2013/19756-8 and 2016/11135-2. The third author was supported by CNPq grant 303755/09-1, FAPESP grant 2012/18780-0, and CNPq/Universal grant 476024/2012-9.

A right-invariant control system $Σ$ on a connected Lie group $G$ induce affine control systems $Σ_{Θ}$ on every flag manifold $\mathbb{F}_{Θ}=G/P_{Θ}$. In this paper we show that the chain control sets of the induced systems coincides with their analogous one defined via semigroup actions. Consequently, any chain control set of the system contains a control set with nonempty interior and, if the number of the control sets with nonempty interior coincides with the number of the chain control sets, then the closure of any control set with nonempty interior is a chain control set. Some relevant examples are included.

Citation: Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101
References:
[1]

V. Ayala and L. A. B. San Martin, Controllability of two-dimensional bilinear control systems: Restricted Controls and discrete-time, Proyecciones, 18 (1999), 207-223. 

[2]

C. J. Braga Barros and L. A. B. San Martin, Chain control sets for semigroup actions, Mat. Apl. Comp., 15 (1996), 257-276. 

[3]

C. J. Braga Barros and L. A. B. San Martin, Chain transitive sets for flows on flag bundles, Forum Math., 19 (2007), 19-60.  doi: 10.1515/FORUM.2007.002.

[4]

R. W. Brocke, System theory on group manifolds and coset spaces, SIAM Journal on Control, 10 (1972), 265-284. 

[5]

F. Colonius and W. Kliemann, The Dynamics of Control Birkhauser, 2000. doi: 10.1007/978-1-4612-1350-5.

[6]

A. Da Silva and C. Kawan, Hyperbolic chain control sets on flag manifolds, Journal of Dynamics and Control Systems, 22 (2016), 725-745.  doi: 10.1007/s10883-015-9308-1.

[7]

A. Da Silva and C. Kawan, Invariance entropy of hyperbolic control sets, Discrete and Continuous Dynamical Systems, 36 (2016), 97-136.  doi: 10.3934/dcds.2016.36.97.

[8]

V. Jurjevic, Geometric Control Theory Cambridge University Press, 1997.

[9]

V. Jurjevic and H. Sussmann, Control systems on Lie groups, Journal of Differential Equations, 12 (1972), 313-329. 

[10]

C. Kawan, Invariance Entropy for Deterministic Control SystemsAn Introduction, Lecture Notes in Mathematics, 2089, Springer-Verlag, Berlin, 2013.

[11]

M. Patrao and L.A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, Journal of Dynamics and Differential Equations, 19 (2007), 155-180. 

[12]

L. A. B. San Martin, Order and domains of attractions of control sets in flag manifolds, Journal of Lie theory, 8 (1998), 335-350. 

[13]

L. A. B. San Martin and L. Seco, Morse and Lyapunov spectra and dynamics on flag bundles, Ergod. Th. & Dynam. Sys., 30 (2010), 893-922.  doi: 10.1017/S0143385709000285.

[14]

L. A. B. San Martin and P. A. Tonelli, Semigroup actions on Homogeneous Spaces, Semigroup Forum, 50 (1995), 59-88.  doi: 10.1007/BF02573505.

show all references

References:
[1]

V. Ayala and L. A. B. San Martin, Controllability of two-dimensional bilinear control systems: Restricted Controls and discrete-time, Proyecciones, 18 (1999), 207-223. 

[2]

C. J. Braga Barros and L. A. B. San Martin, Chain control sets for semigroup actions, Mat. Apl. Comp., 15 (1996), 257-276. 

[3]

C. J. Braga Barros and L. A. B. San Martin, Chain transitive sets for flows on flag bundles, Forum Math., 19 (2007), 19-60.  doi: 10.1515/FORUM.2007.002.

[4]

R. W. Brocke, System theory on group manifolds and coset spaces, SIAM Journal on Control, 10 (1972), 265-284. 

[5]

F. Colonius and W. Kliemann, The Dynamics of Control Birkhauser, 2000. doi: 10.1007/978-1-4612-1350-5.

[6]

A. Da Silva and C. Kawan, Hyperbolic chain control sets on flag manifolds, Journal of Dynamics and Control Systems, 22 (2016), 725-745.  doi: 10.1007/s10883-015-9308-1.

[7]

A. Da Silva and C. Kawan, Invariance entropy of hyperbolic control sets, Discrete and Continuous Dynamical Systems, 36 (2016), 97-136.  doi: 10.3934/dcds.2016.36.97.

[8]

V. Jurjevic, Geometric Control Theory Cambridge University Press, 1997.

[9]

V. Jurjevic and H. Sussmann, Control systems on Lie groups, Journal of Differential Equations, 12 (1972), 313-329. 

[10]

C. Kawan, Invariance Entropy for Deterministic Control SystemsAn Introduction, Lecture Notes in Mathematics, 2089, Springer-Verlag, Berlin, 2013.

[11]

M. Patrao and L.A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, Journal of Dynamics and Differential Equations, 19 (2007), 155-180. 

[12]

L. A. B. San Martin, Order and domains of attractions of control sets in flag manifolds, Journal of Lie theory, 8 (1998), 335-350. 

[13]

L. A. B. San Martin and L. Seco, Morse and Lyapunov spectra and dynamics on flag bundles, Ergod. Th. & Dynam. Sys., 30 (2010), 893-922.  doi: 10.1017/S0143385709000285.

[14]

L. A. B. San Martin and P. A. Tonelli, Semigroup actions on Homogeneous Spaces, Semigroup Forum, 50 (1995), 59-88.  doi: 10.1007/BF02573505.

[1]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics and Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[2]

Roberta Fabbri, Sylvia Novo, Carmen Núñez, Rafael Obaya. Null controllable sets and reachable sets for nonautonomous linear control systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1069-1094. doi: 10.3934/dcdss.2016042

[3]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[4]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[5]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[6]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[7]

Marc Puche, Timo Reis, Felix L. Schwenninger. Funnel control for boundary control systems. Evolution Equations and Control Theory, 2021, 10 (3) : 519-544. doi: 10.3934/eect.2020079

[8]

Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629

[9]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control and Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[10]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synchronization of dynamical systems on Riemannian manifolds by an extended PID-type control theory: Numerical evaluation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022047

[11]

Adolfo Damiano Cafaro, Simone Fiori. Optimization of a control law to synchronize first-order dynamical systems on Riemannian manifolds by a transverse component. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3947-3969. doi: 10.3934/dcdsb.2021213

[12]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[13]

Alexey Gorshkov. Stable invariant manifolds with application to control problems. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021040

[14]

Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519

[15]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[16]

Andrew D. Lewis. Linearisation of tautological control systems. Journal of Geometric Mechanics, 2016, 8 (1) : 99-138. doi: 10.3934/jgm.2016.8.99

[17]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control and Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[18]

Hamid Norouzi Nav, Mohammad Reza Jahed Motlagh, Ahmad Makui. Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1123-1141. doi: 10.3934/jimo.2018002

[19]

Yafei Zu. Inter-organizational contract control of advertising strategies in the supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021126

[20]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (80)
  • HTML views (70)
  • Cited by (4)

[Back to Top]