This paper is concerned with traveling curved fronts in reaction diffusion equations with degenerate monostable and combustion nonlinearities. For a given admissible pyramidal in three-dimensional spaces, the existence of a pyramidal traveling front has been proved by Wang and Bu [
Citation: |
[1] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5.![]() ![]() ![]() |
[2] |
A. Bonnet and F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118.
doi: 10.1137/s0036141097316391.![]() ![]() ![]() |
[3] |
Z.-H. Bu and Z.-C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139-160.
doi: 10.3934/cpaa.2016.15.139.![]() ![]() ![]() |
[4] |
Z. -H. Bu and Z. -C. Wang, Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations, submitted.
![]() |
[5] |
Z. -H. Bu and Z. -C. Wang, Stability of pyramidal traveling fronts in degenerate monostable and combustion equations Ⅱ, preprint.
![]() |
[6] |
M. El Smaily, F. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Anal., 74 (2011), 6469-6486.
doi: 10.1016/j.na.2011.06.030.![]() ![]() ![]() |
[7] |
G. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.
![]() ![]() |
[8] |
F. Hamel, Bistable transition fronts in $\mathbb{R}^{N}$, Adv. Math., 289 (2016), 279-344.
doi: 10.1016/j.aim.2015.11.033.![]() ![]() ![]() |
[9] |
F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $\mathbb{R}^{N}$ with conicalshaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819.
doi: 10.1080/03605300008821532.![]() ![]() ![]() |
[10] |
F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238.![]() ![]() ![]() |
[11] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Stability of conical fronts in a model for conical flames in two space dimensions, Ann. Sci. École Normale Sup., 37 (2004), 469-506.
doi: 10.1016/j.ansens.2004.03.001.![]() ![]() ![]() |
[12] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069.![]() ![]() ![]() |
[13] |
F. Hamel, R. Monneau and J.-M Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92.
doi: 10.3934/dcds.2006.14.75.![]() ![]() ![]() |
[14] |
M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Linéaire, 23 (2006), 283-329.
doi: 10.1016/j.anihpc.2005.03.003.![]() ![]() ![]() |
[15] |
M. Haragus and A. Scheel, Almost planar waves in anisotropic media, Comm. Partial Differential Equations, 31 (2006), 791-815.
doi: 10.1080/03605300500361420.![]() ![]() ![]() |
[16] |
R. Huang, Stability of travelling fronts of the Fisher-KPP equation in $\mathbb{R}^{N}$, Nonlinear Diff. Eq. Appl., 15 (2008), 599-622.
doi: 10.1007/s00030-008-7041-0.![]() ![]() ![]() |
[17] |
Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054.
doi: 10.1017/S0308210510001253.![]() ![]() ![]() |
[18] |
J. A. Leach, D. J. Needham and A. L. Kay, The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: Algebraic decay rates, Phys. D, 167 (2002), 153-182.
doi: 10.1016/S0167-2789(02)00428-1.![]() ![]() ![]() |
[19] |
W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395.
doi: 10.3934/nhm.2013.8.379.![]() ![]() ![]() |
[20] |
H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832.
doi: 10.1016/j.jde.2004.06.011.![]() ![]() ![]() |
[21] |
H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011.![]() ![]() ![]() |
[22] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Insiana Univ. Math. J., 21 (1972), 979-1000.
![]() ![]() |
[23] |
W.-J. Sheng, W.-T. Li and Z.-C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388-2424.
doi: 10.1016/j.jde.2011.09.016.![]() ![]() ![]() |
[24] |
M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788.![]() ![]() ![]() |
[25] |
M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037.![]() ![]() ![]() |
[26] |
M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contnu. Dyn. Syst., 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011.![]() ![]() ![]() |
[27] |
M. Taniguchi, An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476.
doi: 10.1137/130945041.![]() ![]() ![]() |
[28] |
M. Taniguchi, Convex compact sets in $\mathbb{R}^{N-1}$ give traveling fronts of cooperation-diffusion systems in $\mathbb{R}^{N}$, J. Differential Equations, 260 (2016), 4301-4338.
doi: 10.1016/j.jde.2015.11.010.![]() ![]() ![]() |
[29] |
A. I. Volpert, V. A. Volpert and V. A. Volpert,
Traveling Wave Solutions of Parabolic Systems 140, Amer. Math. Soc. , Providence, RI, 1994.
![]() ![]() |
[30] |
Z.-C. Wang and Z.-H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearity, J. Differential Equations, 260 (2016), 6405-6450.
doi: 10.1016/j.jde.2015.12.045.![]() ![]() ![]() |
[31] |
Z.-C. Wang, W.-T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci. China Math., 59 (2016), 1869-1908.
doi: 10.1007/s11425-016-0015-x.![]() ![]() ![]() |
[32] |
Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advecion diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.
doi: 10.1016/j.jde.2007.03.025.![]() ![]() ![]() |
[33] |
Z.-C. Wang, H.-L. Niu and S. Ruan, On the existence of axisymmetric traveling fronts in the Lotka-Volterra competition-diffusion system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst -B, 22 (2017), 1111-1144.
doi: 10.3934/dcdsb.2017055.![]() ![]() |
[34] |
Z.-C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196-3229.
doi: 10.1016/j.jde.2011.01.017.![]() ![]() ![]() |
[35] |
Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374.
doi: 10.3934/dcds.2012.32.2339.![]() ![]() ![]() |
[36] |
Z.-C. Wang, Cylindrically symmetric traveling fronts in reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1053-1090.
doi: 10.1017/S0308210515000268.![]() ![]() ![]() |
[37] |
Y.-P. Wu and X.-X. Xing, Stability of traveling waves with critical speeds for p-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 20 (2008), 1123-1139.
doi: 10.3934/dcds.2008.20.1123.![]() ![]() ![]() |
[38] |
Y.-P. Wu, X.-X. Xing and Q.-X. Ye, Stability of traveling waves with algebraic decay for n-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 16 (2006), 47-66.
doi: 10.3934/dcds.2006.16.47.![]() ![]() ![]() |