This paper is devoted to studying the existence of solutions for a general class of abstract neutral functional differential equations of first order with finite delay. Specifically, we distinguish among mild, strong and classical solutions, and we characterize in terms of the forcing function of the equation the existence of solutions of each one of these types.
Citation: |
[1] |
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of
Infinite Dimensional Systems, 2nd edition, Birkhäuser, Boston, 2007.
![]() ![]() |
[2] |
E. N. Chukwu, Stability and Time-Optimal Control of Hereditary Systems, 2nd edition, World
Scientific, New Jersey, 2001.
doi: 10.1142/4745.![]() ![]() |
[3] |
M. C. Delfour and S. K. Mitter, Hereditary differential systems with constant delays. Ⅰ. General case, J. Differential Equations, 12 (1972), 213-235.
doi: 10.1016/0022-0396(72)90030-7.![]() ![]() ![]() |
[4] |
M. C. Delfour, State theory of linear hereditary differential systems, J. Math. Anal. Appl., 60 (1977), 8-35.
doi: 10.1016/0022-247X(77)90044-0.![]() ![]() ![]() |
[5] |
M. C. Delfour and J. Karrakchou, State space theory of linear time invariant systems with delays in state, control, and observation variables, Ⅰ, Ⅱ., J. Math. Anal. Appl., 125 (1987), 361-450.
doi: 10.1016/0022-247X(87)90099-0.![]() ![]() ![]() |
[6] |
M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968), 113-126.
doi: 10.1007/BF00281373.![]() ![]() ![]() |
[7] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.![]() ![]() ![]() |
[8] |
H. R. Henríquez, Introducción a la Integración Vectorial, Editorial Académica Española, Saarbrücken, 2012.
![]() |
[9] |
E. Hernández and D. O'Regan, On a new class of abstract neutral differential equations, J. Funct. Anal., 261 (2011), 3457-3481.
![]() |
[10] |
V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publ., Dordrecht, 1999.
doi: 10.1007/978-94-017-1965-0.![]() ![]() ![]() |
[11] |
A. Lunardi, Analytic Semigroup and Optimal Regularity in Parabolic Problems, Birkhäuser-Verlag, Basel, 1995.
![]() ![]() |
[12] |
W. Michiels and S.-I. Niculescu, Stability and Stabilization of Time-Delay Systems, SIAM, Philadelphia, 2007.
doi: 10.1137/1.9780898718645.![]() ![]() ![]() |
[13] |
J. A. Nohel, Nonlinear Volterra equations for heat flow in material with memory, in Integral and Functional Differential Equations (eds. T. L. Herdman, S. M. Rankin Ⅲ, and H. W. Stech), Marcel Dekker, 67 (1981), 3-82.
![]() ![]() |
[14] |
A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[15] |
D. Salamon, Control and Observation of Neutral Systems, Chapman & Hall/CRC, Boston, 1984.
![]() ![]() |
[16] |
J. Wu, Theory and Applications of Partial Functional-Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1.![]() ![]() ![]() |