\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling waves and entire solutions for an epidemic model with asymmetric dispersal

  • Author Bio: xuwb08@lzu.edu.cn(W.-B. Xu); zhangl13@lzu.edu.cn(L. Zhang)
  • Corresponding author

    Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with traveling waves and entire solutions of one epidemic model with asymmetric dispersal kernel function arising from the spread of an epidemic by oral-faecal transmission. The asymmetry of the kernel function will have an influence on two aspects: (ⅰ) the minimal wave speed of traveling wave fronts may be nonpositive, but we give a new restrictive condition on the kernel function to guarantee it is positive; (ⅱ) the two traveling wave solutions with the same speed spreading from right and left of $x$-axis may be different in shape, which further makes that the entire solutions with five or four parameters may be asymmetric and the entire solutions with three parameters increasing in $x$ may be different from those decreasing in $x$ in shape. As for traveling wave solutions, we get the existence, asymptotic behavior and uniqueness of the two traveling wave solutions spreading from right and left of $x$-axis, respectively. We further construct three new entire solutions with five, four or three parameters. Two comparison principles also be established.

    Mathematics Subject Classification: 35K57, 35R20, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. d'Epidemiol. Santé Publique, 27 (1979), 32-121. 
    [2] J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.
    [3] X. Chen and J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84.  doi: 10.1016/j.jde.2004.10.028.
    [4] X. ChenJ. S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 1207-1237.  doi: 10.1017/S0308210500004959.
    [5] J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.
    [6] J. Coville, Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases Prépublication du CMM Hal-00696208.
    [7] J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics., Proc. Roy. Soc. Edinburgh. Sect. A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.
    [8] W. Ellison and  F. EllisonPrime Numbers, A Wiley-Interscience Publication, John Wiley & Sons, New York; Hermann, Paris, 1985. 
    [9] Y. FukaoY. Morita and H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004), 15-32. 
    [10] J. S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.
    [11] J. S. Guo and C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku. Math. J., 62 (2010), 17-28.  doi: 10.2748/tmj/1270041024.
    [12] F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276.  doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W.
    [13] F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 157 (2001), 91-163.  doi: 10.1007/PL00004238.
    [14] C. H. Hsu and T. S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.  doi: 10.1088/0951-7715/26/10/2925.
    [15] W. T. LiY. J Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.
    [16] W. T. LiZ. C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129.  doi: 10.1016/j.jde.2008.03.023.
    [17] W. T. LiL. Zhang and G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560.  doi: 10.3934/dcds.2015.35.1531.
    [18] G. Lv, Asymptotic behavior of traveling fronts and entire solutions for a nonlocal monostable equation, Nonlinear Anal., 72 (2010), 3659-3668.  doi: 10.1016/j.na.2009.12.047.
    [19] R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.
    [20] Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.  doi: 10.1007/s10884-006-9046-x.
    [21] Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.  doi: 10.1137/080723715.
    [22] J. D. MurrayMathematical Biology, Springer, Berlin-Heidelberg-New York, 1993. 
    [23] S. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.
    [24] Y. J. Sun, L. Zhang, W. T. Li and Z. C. Wang, Entire solutions in nonlocal monostable equations: asymmetric case (2015), submitted.
    [25] Y. J. SunW. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011), 814-826.  doi: 10.1016/j.na.2010.09.032.
    [26] A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Vol. 140, Amer. Math. Soc. , Providence Rhode Island, 1994.
    [27] M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay, Nonlinearity, 23 (2010), 1609-1630.  doi: 10.1088/0951-7715/23/7/005.
    [28] Z. C. WangW. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084.  doi: 10.1090/S0002-9947-08-04694-1.
    [29] Z. C. WangW. T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.
    [30] S. L. Wu and C. H. Hsu, Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.  doi: 10.3934/dcds.2016.36.2329.
    [31] S. L. Wu and C. H. Hsu, Existence of entire solutions for delayed monostable epidemic models, Trans. Amer. Math. Soc., 368 (2016), 6033-6062.  doi: 10.1090/tran/6526.
    [32] S. L. Wu and H. Wang, Front-like entire solutions for monostable reaction-diffusion systems, J. Dynam. Differential Equations, 25 (2013), 505-533.  doi: 10.1007/s10884-013-9293-6.
    [33] D. Xu and X. Q. Zhao, Erratum to "Bistable waves in an epidemic model", J. Dynam. Differential Equations, 17 (2005), 219-247.  doi: 10.1007/s10884-005-6294-0.
    [34] H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.  doi: 10.2977/prims/1145476150.
    [35] L. Zhang, W. T. Li, Z. C. Wang and Y. J. Sun, Entire solutions in nonlocal bistable equations: asymmetric case (2016), submitted.
    [36] L. ZhangW. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224.  doi: 10.1007/s10884-014-9416-8.
    [37] X. Q. Zhao and W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. B, 4 (2004), 1117-1128.  doi: 10.3934/dcdsb.2004.4.1117.
  • 加载中
SHARE

Article Metrics

HTML views(389) PDF downloads(252) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return