• Previous Article
    Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves
  • DCDS Home
  • This Issue
  • Next Article
    Population dynamical behavior of a two-predator one-prey stochastic model with time delay
May  2017, 37(5): 2539-2564. doi: 10.3934/dcds.2017109

Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation

1. 

School of Mathematics and Statistics, Shandong University, Weihai 264209, China

2. 

School of Mathematics and Systems Science, Beihang University, Beijing 100191, China

3. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

Received  July 2015 Revised  December 2016 Published  February 2017

We study the fractional complex Ginzburg-Landau equation with periodic initial boundary value condition in three spatial dimensions. The problem is discretized fully by Fourier Galerkin spectral method. The dynamical behavior of the resulting discrete system is examined. The existence of a global attractor is established, and the corresponding convergence is proved through the error estimates of the discrete solution. Numerical stability and convergence of the discrete scheme are proved.

Citation: Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109
References:
[1]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.   Google Scholar

[2]

K. Bogdan and T. Byczkowski, On the Schrödinger operator based on the fractional Laplacian, Bull. Polish Acad. Sci. Math., 49 (2001), 291-301.   Google Scholar

[3]

T. Bojdecki and L. G. Gorostiza, Fractional Brownian motion via fractional Laplacian, Statist. Probab. Lett., 44 (1999), 107-108.  doi: 10.1016/S0167-7152(99)00014-0.  Google Scholar

[4]

C. Bu, On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J. Aust. Math. Soc. Ser. B, 36 (1995), 313-324.  doi: 10.1017/S0334270000010468.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

L. CaffarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[7]

C. Canuto and A. Qarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38 (1982), 201-229.  doi: 10.1090/S0025-5718-1982-0637287-3.  Google Scholar

[8]

C. R. DoeringJ. D. GibbonD. Holm and B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity, 1 (1988), 279-309.   Google Scholar

[9]

C. R. DoeringJ. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), 258-318.  doi: 10.1016/0167-2789(94)90150-3.  Google Scholar

[10]

J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017.  doi: 10.1016/j.jmaa.2008.03.061.  Google Scholar

[11]

Z. E. A. Fellah, C. Depollier and M. Fellah, Propagation of ultrasonic pulses in porous elastic solids: A time domain analysis with fractional derivatives, 5-th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Santiago de Compostela, Spain, 2000. Google Scholar

[12]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $ \mathbb{R}^n$, Acta Math., 210 (2013), 261-318.   Google Scholar

[13]

V. L. Ginzburg, Nobel lecture: On superconductivity and superfluidity (what I have and have not managed to do) as well as on the "physical minimum" at the beginning of the XXI century, Reviews of Modern Physics, 76 (2004), 981-998.  doi: 10.1103/RevModPhys.76.981.  Google Scholar

[14]

V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, On Superconductivity and Superfluidity, (2009), 113-137.  doi: 10.1007/978-3-540-68008-6_4.  Google Scholar

[15]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differential Equations, 36 (2010), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[16]

B. GuoY. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. and Comput., 204 (2008), 468-477.  doi: 10.1016/j.amc.2008.07.003.  Google Scholar

[17]

B. Guo and M. Zeng, Solutions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 361 (2010), 131-138.  doi: 10.1016/j.jmaa.2009.09.009.  Google Scholar

[18]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3-D fractional complex Ginzburg-Landau equation, J. Differential Equation, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[19]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. in Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[20]

H. LuS. Lü and Z. Feng, Asymptotic dynamics of 2D fractional complex Ginzburg-Landau equation, I. J. Bifurcation and Chaos, 23 (2013), 1350202, 12pp.  doi: 10.1142/S0218127413502027.  Google Scholar

[21]

S. Lü and Q. Lu, Asymptotic behavior of three-dimensional Ginzburg-Landau type equation, Dynamics of Continuous, Discrete and Impulsive Systems, Series A, 13 (2006), 209-220.   Google Scholar

[22]

S. Lü and Q. Lu, Exponential attractor for the 3D Ginzburg-Landau type equation, Nonlinear Analysis, 67 (2007), 3116-3135.   Google Scholar

[23]

S. Lü, The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation, Numer. Math., 22 (2000), 1-9.   Google Scholar

[24]

V. G. Mazja, Sobolev Spaces, Springer-Verlag, 1985. doi: 10.1007/978-3-662-09922-3.  Google Scholar

[25]

E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, in: J. Leibowitz and E. W. Montroll (Eds. ), Nonequilibrium Phenomena Ⅱ: from Stochastics to Hydrodynamics, North-Holland, Amsterdam, 1984, 1-121 Google Scholar

[26]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. stat. solidi. B, 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[27]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation, Physica D, 41 (1990), 232-252.  doi: 10.1016/0167-2789(90)90125-9.  Google Scholar

[28]

X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98.  doi: 10.1016/j.jmaa.2010.06.035.  Google Scholar

[29]

A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.  doi: 10.1063/1.166272.  Google Scholar

[30]

S. Salsa, Optimal regularity in lower dimensional obstacle problems. Subelliptic PDE's and applications to geometry and finance, Lect. Notes Semin. Interdiscip. Mat. , 6, Semin. Interdiscip. Mat. (S. I. M. ), Potenza, 2007,217-226 Google Scholar

[31]

J. Shen, Long-time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), 201-209.  doi: 10.1080/00036819008839963.  Google Scholar

[32]

M. F. ShlesingerG. M. Zaslavsky and J. Klafter, Strange Kinetics, Nature, 363 (1993), 31-37.  doi: 10.1038/363031a0.  Google Scholar

[33]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[34]

R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1995. Google Scholar

[35]

V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261.  doi: 10.1016/j.physa.2005.02.047.  Google Scholar

[36]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16 (2006), 023110.   Google Scholar

[37]

H. Weitzner and G. M. Zaslavsky, Some applications of fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 8 (2003), 273-281.   Google Scholar

[38]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (2002), 461-580.  doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[39] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, University Press, Oxford, 2005.   Google Scholar
[40]

G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305.  doi: 10.1063/1.1355358.  Google Scholar

show all references

References:
[1]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.   Google Scholar

[2]

K. Bogdan and T. Byczkowski, On the Schrödinger operator based on the fractional Laplacian, Bull. Polish Acad. Sci. Math., 49 (2001), 291-301.   Google Scholar

[3]

T. Bojdecki and L. G. Gorostiza, Fractional Brownian motion via fractional Laplacian, Statist. Probab. Lett., 44 (1999), 107-108.  doi: 10.1016/S0167-7152(99)00014-0.  Google Scholar

[4]

C. Bu, On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J. Aust. Math. Soc. Ser. B, 36 (1995), 313-324.  doi: 10.1017/S0334270000010468.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

L. CaffarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[7]

C. Canuto and A. Qarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38 (1982), 201-229.  doi: 10.1090/S0025-5718-1982-0637287-3.  Google Scholar

[8]

C. R. DoeringJ. D. GibbonD. Holm and B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity, 1 (1988), 279-309.   Google Scholar

[9]

C. R. DoeringJ. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), 258-318.  doi: 10.1016/0167-2789(94)90150-3.  Google Scholar

[10]

J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017.  doi: 10.1016/j.jmaa.2008.03.061.  Google Scholar

[11]

Z. E. A. Fellah, C. Depollier and M. Fellah, Propagation of ultrasonic pulses in porous elastic solids: A time domain analysis with fractional derivatives, 5-th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Santiago de Compostela, Spain, 2000. Google Scholar

[12]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $ \mathbb{R}^n$, Acta Math., 210 (2013), 261-318.   Google Scholar

[13]

V. L. Ginzburg, Nobel lecture: On superconductivity and superfluidity (what I have and have not managed to do) as well as on the "physical minimum" at the beginning of the XXI century, Reviews of Modern Physics, 76 (2004), 981-998.  doi: 10.1103/RevModPhys.76.981.  Google Scholar

[14]

V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, On Superconductivity and Superfluidity, (2009), 113-137.  doi: 10.1007/978-3-540-68008-6_4.  Google Scholar

[15]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differential Equations, 36 (2010), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[16]

B. GuoY. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. and Comput., 204 (2008), 468-477.  doi: 10.1016/j.amc.2008.07.003.  Google Scholar

[17]

B. Guo and M. Zeng, Solutions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 361 (2010), 131-138.  doi: 10.1016/j.jmaa.2009.09.009.  Google Scholar

[18]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3-D fractional complex Ginzburg-Landau equation, J. Differential Equation, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[19]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. in Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[20]

H. LuS. Lü and Z. Feng, Asymptotic dynamics of 2D fractional complex Ginzburg-Landau equation, I. J. Bifurcation and Chaos, 23 (2013), 1350202, 12pp.  doi: 10.1142/S0218127413502027.  Google Scholar

[21]

S. Lü and Q. Lu, Asymptotic behavior of three-dimensional Ginzburg-Landau type equation, Dynamics of Continuous, Discrete and Impulsive Systems, Series A, 13 (2006), 209-220.   Google Scholar

[22]

S. Lü and Q. Lu, Exponential attractor for the 3D Ginzburg-Landau type equation, Nonlinear Analysis, 67 (2007), 3116-3135.   Google Scholar

[23]

S. Lü, The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation, Numer. Math., 22 (2000), 1-9.   Google Scholar

[24]

V. G. Mazja, Sobolev Spaces, Springer-Verlag, 1985. doi: 10.1007/978-3-662-09922-3.  Google Scholar

[25]

E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, in: J. Leibowitz and E. W. Montroll (Eds. ), Nonequilibrium Phenomena Ⅱ: from Stochastics to Hydrodynamics, North-Holland, Amsterdam, 1984, 1-121 Google Scholar

[26]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. stat. solidi. B, 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[27]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation, Physica D, 41 (1990), 232-252.  doi: 10.1016/0167-2789(90)90125-9.  Google Scholar

[28]

X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98.  doi: 10.1016/j.jmaa.2010.06.035.  Google Scholar

[29]

A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.  doi: 10.1063/1.166272.  Google Scholar

[30]

S. Salsa, Optimal regularity in lower dimensional obstacle problems. Subelliptic PDE's and applications to geometry and finance, Lect. Notes Semin. Interdiscip. Mat. , 6, Semin. Interdiscip. Mat. (S. I. M. ), Potenza, 2007,217-226 Google Scholar

[31]

J. Shen, Long-time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), 201-209.  doi: 10.1080/00036819008839963.  Google Scholar

[32]

M. F. ShlesingerG. M. Zaslavsky and J. Klafter, Strange Kinetics, Nature, 363 (1993), 31-37.  doi: 10.1038/363031a0.  Google Scholar

[33]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[34]

R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1995. Google Scholar

[35]

V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261.  doi: 10.1016/j.physa.2005.02.047.  Google Scholar

[36]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16 (2006), 023110.   Google Scholar

[37]

H. Weitzner and G. M. Zaslavsky, Some applications of fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 8 (2003), 273-281.   Google Scholar

[38]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (2002), 461-580.  doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[39] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, University Press, Oxford, 2005.   Google Scholar
[40]

G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305.  doi: 10.1063/1.1355358.  Google Scholar

[1]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 835-851. doi: 10.3934/dcdss.2020048

[2]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[3]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[4]

Linghua Kong, Liqun Kuang, Tingchun Wang. Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6325-6347. doi: 10.3934/dcdsb.2019141

[5]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[6]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

[7]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[8]

Alessia Berti, Valeria Berti, Ivana Bochicchio. Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 247-271. doi: 10.3934/dcdss.2011.4.247

[9]

Shijin Ding, Qiang Du. The global minimizers and vortex solutions to a Ginzburg-Landau model of superconducting films. Communications on Pure & Applied Analysis, 2002, 1 (3) : 327-340. doi: 10.3934/cpaa.2002.1.327

[10]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[11]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[12]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[13]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[14]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[15]

Tianlong Shen, Jianhua Huang. Ergodicity of the stochastic coupled fractional Ginzburg-Landau equations driven by α-stable noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 605-625. doi: 10.3934/dcdsb.2017029

[16]

Yun Lan, Ji Shu. Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2409-2431. doi: 10.3934/cpaa.2019109

[17]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[18]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[19]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[20]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (8)
  • Cited by (1)

Other articles
by authors

[Back to Top]