The boundaries of the hyperbolic components of odd period of the multicorns contain real-analytic arcs consisting of quasi-conformally conjugate parabolic parameters. One of the main results of this paper asserts that the Hausdorff dimension of the Julia sets is a real-analytic function of the parameter along these parabolic arcs. This is achieved by constructing a complex one-dimensional quasiconformal deformation space of the parabolic arcs which are contained in the dynamically defined algebraic curves $ \mathrm{Per}_n(1)$ of a suitably complexified family of polynomials. As another application of this deformation step, we show that the dynamically natural parametrization of the parabolic arcs has a non-vanishing derivative at all but (possibly) finitely many points.
We also look at the algebraic sets $ \mathrm{Per}_n(1)$ in various families of polynomials, the nature of their singularities, and the 'dynamical' behavior of these singular parameters.
Citation: |
Figure 2.
Pictorial representation of the image of
Figure 4.
The outer yellow curve indicates part of
[1] |
S. Basu, R. Pollack and M. -F. Coste-Roy,
Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, 2003.
doi: 10.1007/978-3-662-05355-3.![]() ![]() |
[2] |
A. F. Beardon,
Iteration of Rational Functions, Complex Analytic Dynamical Systems Series: Graduate Texts in Mathematics, Vol. 132, Springer-Verlag, 1991.
![]() |
[3] |
W. Bergweiler and A. Eremenko, Green's function and anti-holomorphic dynamics on a torus, Proc. Amer. Math. Soc., 144 (2016), 2911-2922.
doi: 10.1090/proc/13044.![]() ![]() |
[4] |
A. Bonifant, X. Buff and J. Milnor, Antipode preserving cubic maps: The fjord theorem, preprint, arXiv: 1512.01850.
![]() |
[5] |
A. Bonifant, X. Buff and J. Milnor, Antipode preserving cubic maps Ⅱ: tongues and the ring locus, work in progress.
![]() |
[6] |
J. Canela, N. Fagella and A. Garijo, On a family of rational perturbations of the doubling map, Journal of Difference Equations and Applications, 21 (2015), 715-741.
doi: 10.1080/10236198.2015.1050387.![]() ![]() |
[7] |
M. Denker and M. Urbanski, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc., 43 (1991), 107-118.
doi: 10.1112/jlms/s2-43.1.107.![]() ![]() |
[8] |
N. Dobbs, Nice sets and invariant densities in complex dynamics, Math. Proc. Cambridge Philos. Soc., 150 (2011), 157-165.
doi: 10.1017/S0305004110000265.![]() ![]() |
[9] |
D. S. Dummit and R. M. Foote,
Abstract Algebra, 3rd Edition, John Wiley and Sons, Inc. , 2003.
![]() |
[10] |
J. H. Hubbard and D. Schleicher,
Multicorns are not path connected, in Frontiers in Complex Dynamics: In Celebration of John Milnor's 80th Birthday (eds. A. Bonifant, M. Lyubich and S. Sutherland), Princeton University Press, (2014), 73-102
doi: 10.1515/9781400851317-007.![]() ![]() |
[11] |
H. Inou and J. Kiwi, Combinatorics and topology of straightening maps, Ⅰ: Compactness and bijectivity, Advances in Mathematics, 231 (2012), 2666-2733.
doi: 10.1016/j.aim.2012.07.014.![]() ![]() |
[12] |
H. Inou and S. Mukherjee, Non-landing parameter rays of the multicorns, Inventiones Mathematicae, 204 (2016), 869-893.
doi: 10.1007/s00222-015-0627-3.![]() ![]() |
[13] |
H. Inou and S. Mukherjee, Discontinuity of straightening in antiholomorphic dynamics, arXiv: 1605.08061.
![]() |
[14] |
F. Kirwan, Complex Algebraic Curves, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511623929.![]() ![]() |
[15] |
D. R. Mauldin and M. Urbanski, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543050.![]() ![]() |
[16] |
C. T. McMullen, Hausdorff dimension and conformal dynamics Ⅱ: Geometrically finite rational maps, Commentarii Mathematici Helvetici, 75 (2000), 535-593.
doi: 10.1007/s000140050140.![]() ![]() |
[17] |
J. Milnor, Dynamics in one Complex Variable, 3rd Edition, Princeton University Press, New Jersey, 2006.
![]() |
[18] |
J. Milnor, Remarks on iterated cubic maps, Experiment. Math., 1 (1992), 5-24.
![]() |
[19] |
J. Milnor,
Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies. Princeton University Press, New Jersey, 1968.
![]() |
[20] |
S. Mukherjee, S. Nakane and D. Schleicher, On multicorns and unicorns Ⅱ: Bifurcations in spaces of antiholomorphic polynomials,
Ergodic Theory and Dynamical Systems, to appear, 2015, http://dx.doi.org/10.1017/etds.2015.65
doi: 10.1017/etds.2015.65.![]() ![]() |
[21] |
S. Mukherjee, Orbit portraits of unicritical antiholomorphic polynomials, Conformal Geometry and Dynamics of the AMS, 19 (2015), 35-50.
doi: 10.1090/S1088-4173-2015-00276-3.![]() ![]() |
[22] |
S. Nakane, Connectedness of the tricorn, Ergodic Theory and Dynamical Systems, 13 (1993), 349-356.
doi: 10.1017/S0143385700007409.![]() ![]() |
[23] |
S. Nakane and D. Schleicher, On multicorns and unicorns Ⅰ: antiholomorphic dynamics, hyperbolic components, and real cubic polynomials, International Journal of Bifurcation and Chaos, 13 (2003), 2825-2844.
doi: 10.1142/S0218127403008259.![]() ![]() |
[24] |
J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory and Dynamical Systems, 27 (2007), 595-636.
doi: 10.1017/S0143385706000629.![]() ![]() |
[25] |
D. Ruelle, Repellers for real analytic maps, Turbulence, Strange Attractors and Chaos, (1995), 351-359.
doi: 10.1142/9789812833709_0023.![]() ![]() |
[26] |
B. Skorulski and M. Urbanski, Finer fractal geometry for analytic families of conformal dynamical systems, Dynamical Systems, 29 (2014), 369-398.
doi: 10.1080/14689367.2014.903385.![]() ![]() |
[27] |
M. Urbanski, Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc., 40 (2003), 281-321.
doi: 10.1090/S0273-0979-03-00985-6.![]() ![]() |
[28] |
P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1979), 937-971.
doi: 10.2307/2373682.![]() ![]() |
[29] |
P. Walters,
An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Volume 79, Springer, 1982.
![]() |
[30] |
C. T. C. Wall,
Singular Points of Plane Curves, London Mathematical Society Student Texts (vol. 63), Cambridge University Press, 2004.
doi: 10.1017/CBO9780511617560.![]() ![]() |
[31] |
M. Zinsmeister,
Thermodynamic Formalism and Holomorphic Dynamical Systems, SMF/AMS Texts and Monographs, Volume 2,2000.
![]() |