• Previous Article
    Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential
  • DCDS Home
  • This Issue
  • Next Article
    Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation
May  2017, 37(5): 2565-2588. doi: 10.3934/dcds.2017110

Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves

1. 

Jacobs University Bremen, Campus Ring 1, Bremen 28759, Germany

2. 

Institute for Mathematical Sciences, Stony Brook University, Stony Brook, 11794, NY, USA

Received  May 2016 Revised  January 2017 Published  February 2017

Fund Project: The author was supported by Deutsche Forschungsgemeinschaft DFG.

The boundaries of the hyperbolic components of odd period of the multicorns contain real-analytic arcs consisting of quasi-conformally conjugate parabolic parameters. One of the main results of this paper asserts that the Hausdorff dimension of the Julia sets is a real-analytic function of the parameter along these parabolic arcs. This is achieved by constructing a complex one-dimensional quasiconformal deformation space of the parabolic arcs which are contained in the dynamically defined algebraic curves $ \mathrm{Per}_n(1)$ of a suitably complexified family of polynomials. As another application of this deformation step, we show that the dynamically natural parametrization of the parabolic arcs has a non-vanishing derivative at all but (possibly) finitely many points.

We also look at the algebraic sets $ \mathrm{Per}_n(1)$ in various families of polynomials, the nature of their singularities, and the 'dynamical' behavior of these singular parameters.

Citation: Sabyasachi Mukherjee. Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2565-2588. doi: 10.3934/dcds.2017110
References:
[1]

S. Basu, R. Pollack and M. -F. Coste-Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, 2003. doi: 10.1007/978-3-662-05355-3.  Google Scholar

[2]

A. F. Beardon, Iteration of Rational Functions, Complex Analytic Dynamical Systems Series: Graduate Texts in Mathematics, Vol. 132, Springer-Verlag, 1991. Google Scholar

[3]

W. Bergweiler and A. Eremenko, Green's function and anti-holomorphic dynamics on a torus, Proc. Amer. Math. Soc., 144 (2016), 2911-2922.  doi: 10.1090/proc/13044.  Google Scholar

[4]

A. Bonifant, X. Buff and J. Milnor, Antipode preserving cubic maps: The fjord theorem, preprint, arXiv: 1512.01850. Google Scholar

[5]

A. Bonifant, X. Buff and J. Milnor, Antipode preserving cubic maps Ⅱ: tongues and the ring locus, work in progress. Google Scholar

[6]

J. CanelaN. Fagella and A. Garijo, On a family of rational perturbations of the doubling map, Journal of Difference Equations and Applications, 21 (2015), 715-741.  doi: 10.1080/10236198.2015.1050387.  Google Scholar

[7]

M. Denker and M. Urbanski, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc., 43 (1991), 107-118.  doi: 10.1112/jlms/s2-43.1.107.  Google Scholar

[8]

N. Dobbs, Nice sets and invariant densities in complex dynamics, Math. Proc. Cambridge Philos. Soc., 150 (2011), 157-165.  doi: 10.1017/S0305004110000265.  Google Scholar

[9]

D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd Edition, John Wiley and Sons, Inc. , 2003. Google Scholar

[10]

J. H. Hubbard and D. Schleicher, Multicorns are not path connected, in Frontiers in Complex Dynamics: In Celebration of John Milnor's 80th Birthday (eds. A. Bonifant, M. Lyubich and S. Sutherland), Princeton University Press, (2014), 73-102 doi: 10.1515/9781400851317-007.  Google Scholar

[11]

H. Inou and J. Kiwi, Combinatorics and topology of straightening maps, Ⅰ: Compactness and bijectivity, Advances in Mathematics, 231 (2012), 2666-2733.  doi: 10.1016/j.aim.2012.07.014.  Google Scholar

[12]

H. Inou and S. Mukherjee, Non-landing parameter rays of the multicorns, Inventiones Mathematicae, 204 (2016), 869-893.  doi: 10.1007/s00222-015-0627-3.  Google Scholar

[13]

H. Inou and S. Mukherjee, Discontinuity of straightening in antiholomorphic dynamics, arXiv: 1605.08061. Google Scholar

[14] F. Kirwan, Complex Algebraic Curves, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511623929.  Google Scholar
[15] D. R. Mauldin and M. Urbanski, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511543050.  Google Scholar
[16]

C. T. McMullen, Hausdorff dimension and conformal dynamics Ⅱ: Geometrically finite rational maps, Commentarii Mathematici Helvetici, 75 (2000), 535-593.  doi: 10.1007/s000140050140.  Google Scholar

[17] J. Milnor, Dynamics in one Complex Variable, 3rd Edition, Princeton University Press, New Jersey, 2006.   Google Scholar
[18]

J. Milnor, Remarks on iterated cubic maps, Experiment. Math., 1 (1992), 5-24.   Google Scholar

[19]

J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies. Princeton University Press, New Jersey, 1968. Google Scholar

[20]

S. Mukherjee, S. Nakane and D. Schleicher, On multicorns and unicorns Ⅱ: Bifurcations in spaces of antiholomorphic polynomials, Ergodic Theory and Dynamical Systems, to appear, 2015, http://dx.doi.org/10.1017/etds.2015.65 doi: 10.1017/etds.2015.65.  Google Scholar

[21]

S. Mukherjee, Orbit portraits of unicritical antiholomorphic polynomials, Conformal Geometry and Dynamics of the AMS, 19 (2015), 35-50.  doi: 10.1090/S1088-4173-2015-00276-3.  Google Scholar

[22]

S. Nakane, Connectedness of the tricorn, Ergodic Theory and Dynamical Systems, 13 (1993), 349-356.  doi: 10.1017/S0143385700007409.  Google Scholar

[23]

S. Nakane and D. Schleicher, On multicorns and unicorns Ⅰ: antiholomorphic dynamics, hyperbolic components, and real cubic polynomials, International Journal of Bifurcation and Chaos, 13 (2003), 2825-2844.  doi: 10.1142/S0218127403008259.  Google Scholar

[24]

J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory and Dynamical Systems, 27 (2007), 595-636.  doi: 10.1017/S0143385706000629.  Google Scholar

[25]

D. Ruelle, Repellers for real analytic maps, Turbulence, Strange Attractors and Chaos, (1995), 351-359.  doi: 10.1142/9789812833709_0023.  Google Scholar

[26]

B. Skorulski and M. Urbanski, Finer fractal geometry for analytic families of conformal dynamical systems, Dynamical Systems, 29 (2014), 369-398.  doi: 10.1080/14689367.2014.903385.  Google Scholar

[27]

M. Urbanski, Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc., 40 (2003), 281-321.  doi: 10.1090/S0273-0979-03-00985-6.  Google Scholar

[28]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1979), 937-971.  doi: 10.2307/2373682.  Google Scholar

[29]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Volume 79, Springer, 1982. Google Scholar

[30]

C. T. C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts (vol. 63), Cambridge University Press, 2004. doi: 10.1017/CBO9780511617560.  Google Scholar

[31]

M. Zinsmeister, Thermodynamic Formalism and Holomorphic Dynamical Systems, SMF/AMS Texts and Monographs, Volume 2,2000. Google Scholar

show all references

References:
[1]

S. Basu, R. Pollack and M. -F. Coste-Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, 2003. doi: 10.1007/978-3-662-05355-3.  Google Scholar

[2]

A. F. Beardon, Iteration of Rational Functions, Complex Analytic Dynamical Systems Series: Graduate Texts in Mathematics, Vol. 132, Springer-Verlag, 1991. Google Scholar

[3]

W. Bergweiler and A. Eremenko, Green's function and anti-holomorphic dynamics on a torus, Proc. Amer. Math. Soc., 144 (2016), 2911-2922.  doi: 10.1090/proc/13044.  Google Scholar

[4]

A. Bonifant, X. Buff and J. Milnor, Antipode preserving cubic maps: The fjord theorem, preprint, arXiv: 1512.01850. Google Scholar

[5]

A. Bonifant, X. Buff and J. Milnor, Antipode preserving cubic maps Ⅱ: tongues and the ring locus, work in progress. Google Scholar

[6]

J. CanelaN. Fagella and A. Garijo, On a family of rational perturbations of the doubling map, Journal of Difference Equations and Applications, 21 (2015), 715-741.  doi: 10.1080/10236198.2015.1050387.  Google Scholar

[7]

M. Denker and M. Urbanski, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc., 43 (1991), 107-118.  doi: 10.1112/jlms/s2-43.1.107.  Google Scholar

[8]

N. Dobbs, Nice sets and invariant densities in complex dynamics, Math. Proc. Cambridge Philos. Soc., 150 (2011), 157-165.  doi: 10.1017/S0305004110000265.  Google Scholar

[9]

D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd Edition, John Wiley and Sons, Inc. , 2003. Google Scholar

[10]

J. H. Hubbard and D. Schleicher, Multicorns are not path connected, in Frontiers in Complex Dynamics: In Celebration of John Milnor's 80th Birthday (eds. A. Bonifant, M. Lyubich and S. Sutherland), Princeton University Press, (2014), 73-102 doi: 10.1515/9781400851317-007.  Google Scholar

[11]

H. Inou and J. Kiwi, Combinatorics and topology of straightening maps, Ⅰ: Compactness and bijectivity, Advances in Mathematics, 231 (2012), 2666-2733.  doi: 10.1016/j.aim.2012.07.014.  Google Scholar

[12]

H. Inou and S. Mukherjee, Non-landing parameter rays of the multicorns, Inventiones Mathematicae, 204 (2016), 869-893.  doi: 10.1007/s00222-015-0627-3.  Google Scholar

[13]

H. Inou and S. Mukherjee, Discontinuity of straightening in antiholomorphic dynamics, arXiv: 1605.08061. Google Scholar

[14] F. Kirwan, Complex Algebraic Curves, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511623929.  Google Scholar
[15] D. R. Mauldin and M. Urbanski, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511543050.  Google Scholar
[16]

C. T. McMullen, Hausdorff dimension and conformal dynamics Ⅱ: Geometrically finite rational maps, Commentarii Mathematici Helvetici, 75 (2000), 535-593.  doi: 10.1007/s000140050140.  Google Scholar

[17] J. Milnor, Dynamics in one Complex Variable, 3rd Edition, Princeton University Press, New Jersey, 2006.   Google Scholar
[18]

J. Milnor, Remarks on iterated cubic maps, Experiment. Math., 1 (1992), 5-24.   Google Scholar

[19]

J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies. Princeton University Press, New Jersey, 1968. Google Scholar

[20]

S. Mukherjee, S. Nakane and D. Schleicher, On multicorns and unicorns Ⅱ: Bifurcations in spaces of antiholomorphic polynomials, Ergodic Theory and Dynamical Systems, to appear, 2015, http://dx.doi.org/10.1017/etds.2015.65 doi: 10.1017/etds.2015.65.  Google Scholar

[21]

S. Mukherjee, Orbit portraits of unicritical antiholomorphic polynomials, Conformal Geometry and Dynamics of the AMS, 19 (2015), 35-50.  doi: 10.1090/S1088-4173-2015-00276-3.  Google Scholar

[22]

S. Nakane, Connectedness of the tricorn, Ergodic Theory and Dynamical Systems, 13 (1993), 349-356.  doi: 10.1017/S0143385700007409.  Google Scholar

[23]

S. Nakane and D. Schleicher, On multicorns and unicorns Ⅰ: antiholomorphic dynamics, hyperbolic components, and real cubic polynomials, International Journal of Bifurcation and Chaos, 13 (2003), 2825-2844.  doi: 10.1142/S0218127403008259.  Google Scholar

[24]

J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory and Dynamical Systems, 27 (2007), 595-636.  doi: 10.1017/S0143385706000629.  Google Scholar

[25]

D. Ruelle, Repellers for real analytic maps, Turbulence, Strange Attractors and Chaos, (1995), 351-359.  doi: 10.1142/9789812833709_0023.  Google Scholar

[26]

B. Skorulski and M. Urbanski, Finer fractal geometry for analytic families of conformal dynamical systems, Dynamical Systems, 29 (2014), 369-398.  doi: 10.1080/14689367.2014.903385.  Google Scholar

[27]

M. Urbanski, Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc., 40 (2003), 281-321.  doi: 10.1090/S0273-0979-03-00985-6.  Google Scholar

[28]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1979), 937-971.  doi: 10.2307/2373682.  Google Scholar

[29]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Volume 79, Springer, 1982. Google Scholar

[30]

C. T. C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts (vol. 63), Cambridge University Press, 2004. doi: 10.1017/CBO9780511617560.  Google Scholar

[31]

M. Zinsmeister, Thermodynamic Formalism and Holomorphic Dynamical Systems, SMF/AMS Texts and Monographs, Volume 2,2000. Google Scholar

Figure 1.  $\mathcal{M}_2^*$, also known as the tricorn and the parabolic arcs on the boundary of the hyperbolic component of period 1 (in blue)
Figure 2.  Pictorial representation of the image of $\left[0,1\right]$ under the quasiconformal map $L_w$; for $w=1+i/8$ (top) and $w=1$ (bottom). The Fatou coordinates of $c_0$ and $f_{c_0}^{\circ k} (c_0)$ are $1/4$ and $3/4$ respectively. For $w=1+i/8$, $L_w(1/4)=1/8+i$ and $L_w(3/4)=7/8-i$, and for $w=1$, $L_w(1/4)=1/4+i$ and $L_w(3/4)=3/4-i$. Observe that $L_w$ commutes with $z\mapsto \overline{z}+1/2$ only when $w\in \mathbb{R}$
Figure 3.  $\pi_2 \circ F : w \mapsto b(w)$ is injective in a neighborhood of $\widetilde{u}$ for all but possibly finitely many $\widetilde{u} \in \mathbb{R}$
Figure 4.  The outer yellow curve indicates part of $\mathrm{Per}_1(1)\cap \lbrace a=\overline{b}\rbrace$, and the inner blue curve (along with the red point) indicates part of the deformation $\mathrm{Per}_1(r)\cap \lbrace a=\overline{b}\rbrace$ for some $r\in (1-\epsilon,1)$. The cusp point $c_0$ on the yellow curve is a critical point of $h_1$, i.e. a singular point of $\mathrm{Per}_1(1)$, and the red point is a critical point of $h_r$; i.e a singular point of $\mathrm{Per}_1(r)$
[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[8]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]