-
Previous Article
Traveling fronts bifurcating from stable layers in the presence of conservation laws
- DCDS Home
- This Issue
-
Next Article
Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves
Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential
1. | Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece |
2. | Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia, Department of Mathematics, University of Craiova, Street A.I. Cuza No 13, 200585 Craiova, Romania |
3. | Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, Kardeljeva ploščad 16, SI-1000 Ljubljana, Slovenia |
We study perturbations of the eigenvalue problem for the negative Laplacian plus an indefinite and unbounded potential and Robin boundary condition. First we consider the case of a sublinear perturbation and then of a superlinear perturbation. For the first case we show that for $ λ<\widehat{λ}_{1}$ ($ \widehat{λ}_{1}$ being the principal eigenvalue) there is one positive solution which is unique under additional conditions on the perturbation term. For $ λ≥q\widehat{λ}_{1}$ there are no positive solutions. In the superlinear case, for $ λ<\widehat{λ}_{1}$ we have at least two positive solutions and for $ λ≥q\widehat{λ}_{1}$ there are no positive solutions. For both cases we establish the existence of a minimal positive solution $ \bar{u}_{λ}$ and we investigate the properties of the map $ λ\mapsto\bar{u}_{λ}$.
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu,
Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Memoirs Amer. Math. Soc., 196 (2008), vi+70 pp.
doi: 10.1090/memo/0915. |
[2] |
A. Ambrosetti and P. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Functional Anal., 14 (1973), 349-381.
|
[3] |
H. Brezis and L. Nirenberg,
$ H^{1}$ versus $ C^{1}$ local minimizers, C.R. Acad. Sci. Paris, Sér. Ⅰ, 317 (1993), 465-472.
|
[4] |
G. D'Agui, S. Marano and N. S. Papageorgiou,
Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821-1845.
doi: 10.1016/j.jmaa.2015.08.065. |
[5] |
M. Filippakis and N. S. Papageorgiou,
Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008), 1883-1992.
doi: 10.1016/j.jde.2008.07.004. |
[6] |
L. Gasinski and N. S. Papageorgiou,
Nonlinear Analysis, Series in Mathematical Analysis and Applications, vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[7] |
S. Hu and N. S. Papageorgiou,
Handbook of Multivalued Analysis. Volume Ⅰ: Theory, Mathematics and its Applications, vol. 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
doi: 10.1007/978-1-4615-4665-8_17. |
[8] |
S. Marano and N. S. Papageorgiou,
Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal., 12 (2013), 815-829.
doi: 10.3934/cpaa.2013.12.815. |
[9] |
D. Motreanu, V. Motreanu and N. S. Papageorgiou,
Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5. |
[10] |
D. Mugnai,
Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), no. 3,379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 299-301.
doi: 10.1007/s00030-011-0129-y. |
[11] |
N. S. Papageorgiou and V. D. Rǎdulescu,
Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010. |
[12] |
N. S. Papageorgiou and V. D. Rǎdulescu,
Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756.
doi: 10.1090/S0002-9947-2014-06518-5. |
[13] |
N. S. Papageorgiou and V. D. Rǎdulescu,
Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Rev. Mat. Complut., 29 (2016), 91-126.
doi: 10.1007/s13163-015-0181-y. |
[14] |
X. Wang,
Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310.
doi: 10.1016/0022-0396(91)90014-Z. |
show all references
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu,
Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Memoirs Amer. Math. Soc., 196 (2008), vi+70 pp.
doi: 10.1090/memo/0915. |
[2] |
A. Ambrosetti and P. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Functional Anal., 14 (1973), 349-381.
|
[3] |
H. Brezis and L. Nirenberg,
$ H^{1}$ versus $ C^{1}$ local minimizers, C.R. Acad. Sci. Paris, Sér. Ⅰ, 317 (1993), 465-472.
|
[4] |
G. D'Agui, S. Marano and N. S. Papageorgiou,
Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821-1845.
doi: 10.1016/j.jmaa.2015.08.065. |
[5] |
M. Filippakis and N. S. Papageorgiou,
Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008), 1883-1992.
doi: 10.1016/j.jde.2008.07.004. |
[6] |
L. Gasinski and N. S. Papageorgiou,
Nonlinear Analysis, Series in Mathematical Analysis and Applications, vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[7] |
S. Hu and N. S. Papageorgiou,
Handbook of Multivalued Analysis. Volume Ⅰ: Theory, Mathematics and its Applications, vol. 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
doi: 10.1007/978-1-4615-4665-8_17. |
[8] |
S. Marano and N. S. Papageorgiou,
Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal., 12 (2013), 815-829.
doi: 10.3934/cpaa.2013.12.815. |
[9] |
D. Motreanu, V. Motreanu and N. S. Papageorgiou,
Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5. |
[10] |
D. Mugnai,
Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), no. 3,379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 299-301.
doi: 10.1007/s00030-011-0129-y. |
[11] |
N. S. Papageorgiou and V. D. Rǎdulescu,
Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010. |
[12] |
N. S. Papageorgiou and V. D. Rǎdulescu,
Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756.
doi: 10.1090/S0002-9947-2014-06518-5. |
[13] |
N. S. Papageorgiou and V. D. Rǎdulescu,
Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Rev. Mat. Complut., 29 (2016), 91-126.
doi: 10.1007/s13163-015-0181-y. |
[14] |
X. Wang,
Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310.
doi: 10.1016/0022-0396(91)90014-Z. |
[1] |
Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063 |
[2] |
Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068 |
[3] |
Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971 |
[4] |
Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 |
[5] |
Nikolaos S. Papageorgiou, Patrick Winkert. Double resonance for Robin problems with indefinite and unbounded potential. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 323-344. doi: 10.3934/dcdss.2018018 |
[6] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[7] |
Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014 |
[8] |
Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188 |
[9] |
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 |
[10] |
Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 |
[11] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Positive solutions for Robin problems with general potential and logistic reaction. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2489-2507. doi: 10.3934/cpaa.2016046 |
[12] |
Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857 |
[13] |
Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control and Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016 |
[14] |
Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 |
[15] |
GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803 |
[16] |
Olga Kharlampovich and Alexei Myasnikov. Tarski's problem about the elementary theory of free groups has a positive solution. Electronic Research Announcements, 1998, 4: 101-108. |
[17] |
Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure and Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999 |
[18] |
Guglielmo Feltrin, Elisa Sovrano, Andrea Tellini. On the number of positive solutions to an indefinite parameter-dependent Neumann problem. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 21-71. doi: 10.3934/dcds.2021107 |
[19] |
Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1 |
[20] |
Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]