• Previous Article
    Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity
  • DCDS Home
  • This Issue
  • Next Article
    Traveling fronts bifurcating from stable layers in the presence of conservation laws
May  2017, 37(5): 2653-2668. doi: 10.3934/dcds.2017113

Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian

1. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla: V-110, Avda. España 1680, Valparaíso, Chile

2. 

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

Received  November 2015 Revised  January 2017 Published  February 2017

In this paper, we study the existence and uniqueness of positive solutions for the following nonlinear fractional elliptic equation:
$ \begin{eqnarray*}(-Δ)^α u=λ a(x)u-b(x)u^p&\ \ \ {\rm in}\,\,\mathbb{R}^N, \end{eqnarray*}$
where $ α∈(0, 1) $, $ N≥ 2 $, $λ >0$, $a$ and $b$ are positive smooth function in $\mathbb{R}^N$ satisfying
$a\left( x \right) \to {a^\infty } > 0\;\;\;\;{\rm{and}}\;\;\;b\left( x \right) \to {b^\infty } > 0\;\;\;\;{\rm{as}}\;\;\;{\rm{|}}\mathit{x}{\rm{|}} \to \infty $
Our proof is based on a comparison principle and existence, uniqueness and asymptotic behaviors of various boundary blow-up solutions for a class of elliptic equations involving the fractional Laplacian.
Citation: Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113
References:
[1]

N. Abatangelo, On a fractional keller osserman condition, arXiv: 1412.6298 [math. AP]. Google Scholar

[2]

N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015), 5555-5607.  doi: 10.3934/dcds.2015.35.5555.  Google Scholar

[3]

G. BarlesE. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana Univ. Math. J., 57 (2008), 213-246.  doi: 10.1512/iumj.2008.57.3315.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[6]

H. ChenP. Felmer and A. Quaas, Large solutions to elliptic equations involving fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1199-1228.  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[7]

H. ChenH. Hajaiej and Y. Wang, Boundary blow-up solutions to fractional elliptic equations in a measure framework, Discrete Contin. Dyn. Syst., 36 (2016), 1881-1903.   Google Scholar

[8]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Soc., 27 (1992), 1-67.   Google Scholar

[9]

Y. Du and Z. Guo, Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math. , 89 (2003), 277-302; Corrigendum. J. Anal. Math. , 107 (2009), 391-393. Google Scholar

[10]

Y. Du and L. Ma, Logistic type equations on $\mathbb{R}^N$ by a squeezing method involving boundary blow up solutions, J. London Math. Soc.(2), 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.  Google Scholar

[11]

P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., 78 (2012), 123-144.   Google Scholar

[12]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[13]

L. del Pezzo and A. Quaas, Global bifurcation for fractional $p$-Laplacian and application, To appear in Zeitschrift Fur Analysis und ihre Anwendungen. arXiv: 1412.4722 [math. AP] Google Scholar

[14]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154.  doi: 10.5565/PUBLMAT_58114_06.  Google Scholar

[16]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. xiv+244 pp. Google Scholar

show all references

References:
[1]

N. Abatangelo, On a fractional keller osserman condition, arXiv: 1412.6298 [math. AP]. Google Scholar

[2]

N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015), 5555-5607.  doi: 10.3934/dcds.2015.35.5555.  Google Scholar

[3]

G. BarlesE. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana Univ. Math. J., 57 (2008), 213-246.  doi: 10.1512/iumj.2008.57.3315.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[6]

H. ChenP. Felmer and A. Quaas, Large solutions to elliptic equations involving fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1199-1228.  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[7]

H. ChenH. Hajaiej and Y. Wang, Boundary blow-up solutions to fractional elliptic equations in a measure framework, Discrete Contin. Dyn. Syst., 36 (2016), 1881-1903.   Google Scholar

[8]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Soc., 27 (1992), 1-67.   Google Scholar

[9]

Y. Du and Z. Guo, Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math. , 89 (2003), 277-302; Corrigendum. J. Anal. Math. , 107 (2009), 391-393. Google Scholar

[10]

Y. Du and L. Ma, Logistic type equations on $\mathbb{R}^N$ by a squeezing method involving boundary blow up solutions, J. London Math. Soc.(2), 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.  Google Scholar

[11]

P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., 78 (2012), 123-144.   Google Scholar

[12]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[13]

L. del Pezzo and A. Quaas, Global bifurcation for fractional $p$-Laplacian and application, To appear in Zeitschrift Fur Analysis und ihre Anwendungen. arXiv: 1412.4722 [math. AP] Google Scholar

[14]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154.  doi: 10.5565/PUBLMAT_58114_06.  Google Scholar

[16]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. xiv+244 pp. Google Scholar

[1]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[2]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[3]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[4]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[5]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[6]

Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020039

[8]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[9]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[10]

Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069

[11]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[12]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[13]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[14]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[15]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[16]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[17]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[18]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[19]

W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

[20]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (4)
  • Cited by (0)

Other articles
by authors

[Back to Top]