In this work we prove the equivalence between three different weak formulations of the steady periodic water wave problem where the vorticity is discontinuous. In particular, we prove that generalised versions of the standard Euler and stream function formulation of the governing equations are equivalent to a weak version of the recently introduced modified-height formulation. The weak solutions of these formulations are considered in Hölder spaces.
Citation: |
[1] | A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 81 (2011), xii+315. doi: 10.1137/1.9781611971873. |
[2] | A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commun. Pure Appl. Anal., 11 (2012), 1397-1406. doi: 10.3934/cpaa.2012.11.1397. |
[3] | A. Constantin, The flow beneath a periodic travelling surface water wave, J. Phys. A: Math. Theor., 48 (2015), 1397-143001(25pp). doi: 10.1088/1751-8113/48/14/143001. |
[4] | A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math., 15 (2004), 755-768. doi: 10.1017/S0956792504005777. |
[5] | A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181. doi: 10.1017/S0022112003006773. |
[6] | A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12. |
[7] | A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527. doi: 10.1002/cpa.3046. |
[8] | A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175. doi: 10.1007/s00205-011-0412-4. |
[9] | A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67. doi: 10.1007/s00205-010-0314-x. |
[10] | M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, Journal de Mathématiques Pures et Appliquées, 13 (1934), 217-291. |
[11] | J. Escher and B. V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function, Differential Integral Equations, 27 (2014), 217-232. |
[12] | J. Escher, A. V. Matioc and B. V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations, 251 (2011), 2932-2949. doi: 10.1016/j.jde.2011.03.023. |
[13] | D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated bottom vorticity layer, J. Nonlinear Math. Phys., 19 (2012), 1240007(14 pp). doi: 10.1142/S1402925112400074. |
[14] | D. Henry, Regularity for steady periodic capillary water waves with vorticity, Philos. Trans. R. Soc. Lond. A., 370 (2012), 1616-1628. doi: 10.1098/rsta.2011.0449. |
[15] | D. Henry, Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface, Nonlinear Anal. Real World Appl., 14 (2013), 1034-1043. doi: 10.1016/j.nonrwa.2012.08.015. |
[16] | D. Henry, Large amplitude steady periodic waves for fixed-depth rotational flows, Comm. Partial Differential Equations, 38 (2013), 1015-1037. doi: 10.1080/03605302.2012.734889. |
[17] | D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows, Quart. Appl. Math., 71 (2013), 455-487. doi: 10.1090/S0033-569X-2013-01293-8. |
[18] | D. Henry and A. V. Matioc, Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 775-786. doi: 10.1017/S0308210512001990. |
[19] | D. Henry and B. V. Matioc, On the regularity of steady periodic stratified water waves, Comm. Pure Appl. Anal., 11 (2012), 1453-1464. |
[20] | D. Henry and B. V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 955-974. |
[21] | D. Henry and B. V. Matioc, Aspects of the mathematical analysis of nonlinear stratified water waves, Elliptic and parabolic equations, Springer Proc. Math. Stat., Springer, Cham, 119 (2015), 159-177. doi: 10.1007/978-3-319-12547-3_7. |
[22] | D. Henry and S. Sastre-Gomez, Steady Periodic Waver Waves Bifurcating for Fixed-Depth Rotational Flows with Discontinuous Vorticity, Differential and Integral Equations, 2017. |
[23] | R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511624056. |
[24] | J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 (2008), 197-215. doi: 10.1017/S0022112008002371. |
[25] | M. J. Lighthill, Waves in fluids, View issue TOC, 20 (1967), 267-293. doi: 10.1002/cpa.3160200204. |
[26] | C. I. Martin and B. V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114. doi: 10.1016/j.jde.2014.01.036. |
[27] | C. I. Martin and B. V. Matioc, Steady periodic water waves with unbounded vorticity: Equivalent formulations and existence results, J. Nonlinear Sci., 24 (2014), 633-659. doi: 10.1007/s00332-014-9201-1. |
[28] | A. V. Matioc and B. V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886. doi: 10.1007/s00220-014-1918-z. |
[29] | O. M. Phillips and M. L. Banner, Wave breaking in the presence of wind drift and swell, Journal of Fluid Mechanics, 66 (1974), 625-640. doi: 10.1017/S0022112074000413. |
[30] | G. Thomas and G. Klopman, Wave-current interactions in the nearshore region, gravity waves in water of finite depth, Advances in Fluid Mechanics, 10 (1997), 215-319. |
[31] | J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. |
[32] | E. Varvaruca, On the existence of extreme waves and the {S}tokes conjecture with vorticity, J. Differential Equations, 246 (2009), 4043-4076. doi: 10.1016/j.jde.2008.12.018. |
[33] | E. Varvaruca and G. S. Weiss, A geometric approach to generalized {S}tokes conjectures, Acta Math., 206 (2011), 363-403. doi: 10.1007/s11511-011-0066-y. |
[34] | E. Varvaruca and A. Zarnescu, Equivalence of weak formulations of the steady water waves equations, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1703-1719. doi: 10.1098/rsta.2011.0455. |
[35] | E. Wahlén, Steady periodic capillary-gravity waves with vorticity, SIAM J. Math. Anal., 38 (2006), 921-943. |
[36] | E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483. |
[37] | S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105. doi: 10.1137/080721583. |