We study the existence of periodic solutions for a prescribed-energy problem of Hamiltonian systems whose potential function has a singularity at the origin like $-1/|q|^{α} (q ∈ \mathbb{R}^N)$ . It is known that there exist generalized periodic solutions which may have collisions, and the number of possible collisions has been estimated. In this paper we obtain a new estimation of the number of collisions. Especially we show that the obtained solutions have no collision if $N ≥ 2$ and $α >1$ .
Citation: |
[1] |
A. Ambrosetti and V. Coti-Zelati,
Periodic Solutions of Singular Lagrangian Systems,
Birkhauser, 1993.
doi: 10.1007/978-1-4612-0319-3.![]() ![]() ![]() |
[2] |
A. Ambrosetti and V. Coti-Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rational Mech. Anal., 112 (1990), 339-362.
doi: 10.1007/BF02384078.![]() ![]() ![]() |
[3] |
H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math., 90 (1987), 1-9.
doi: 10.1007/BF01389030.![]() ![]() ![]() |
[4] |
T. J. Hunt and R. S. MacKay, Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity, 16 (2003), 1499-1510.
doi: 10.1088/0951-7715/16/4/318.![]() ![]() ![]() |
[5] |
J. Milnor, On the geometry of the Kepler problem, Amer. Math. Monthly, 90 (1983), 353-365.
doi: 10.2307/2975570.![]() ![]() ![]() |
[6] |
R. Montgomery, Fitting hyperbolic pants to a three-body problem, Ergodic Theory Dynam. Systems, 25 (2005), 921-947.
doi: 10.1017/S0143385704000653.![]() ![]() ![]() |
[7] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203.![]() ![]() ![]() |
[8] |
K. Tanaka, A prescribed energy problem for a singular Hamiltonian system with a weak force, J. Funct. Anal., 113 (1993), 351-390.
doi: 10.1006/jfan.1993.1054.![]() ![]() ![]() |
[9] |
C. Viterbo, A proof of Weinstein's conjecture in $\mathbb{R}^{2n}$, Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 4 (1987), 337-356.
![]() ![]() |
[10] |
A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2), 108 (1978), 507-518.
doi: 10.2307/1971185.![]() ![]() ![]() |