May  2017, 37(5): 2787-2812. doi: 10.3934/dcds.2017120

Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise

1. 

School of Mathematical Science, Huaiyin Normal University, Huaian, 223300, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China

* Corresponding author: Zhaojuan Wang

Received  July 2016 Revised  January 2017 Published  February 2017

Fund Project: The authors are supported by NSFC grant No. 11326114, 11401244, 11471290. Natural Science Research Project of Ordinary Universities in Jiangsu Province grant No. 14KJB110003. Zhejiang Natural Science Foundation grant No. LY14A010012 and Zhejiang Normal University Foundation grant No. ZC304014012.

In this paper we study the asymptotic behavior of solutions of the non-autonomous stochastic strongly damped wave equation driven by multiplicative noise defined on unbounded domains. We first introduce a continuous cocycle for the equation. Then we consider the existence of a tempered pullback random attractor for the cocycle. Finally we establish the upper semicontinuity of random attractors as the coefficient of the white noise term tends to zero.

Citation: Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120
References:
[1]

L. Arnold, Random Dynamical Systems Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

P. Chow, Stochastic wave equation with polynomial nonlinearity, Ann. Appl. Probab, 12 (2002), 361-381.  doi: 10.1214/aoap/1015961168.  Google Scholar

[4]

I. Chueshov, Monotone Random Systems Theory and Applications Springer-Verlag, New York, 2002. doi: 10.1007/b83277.  Google Scholar

[5]

H. Crauel, Random Probability Measure on Polish Spaces Taylor & Francis, London, 2002. doi: 10.4324/9780203219119.  Google Scholar

[6]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[8]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics and Dynamics, 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[9]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[10]

X. Fan, Random attractor for a damped sine-Gordon equation with white noise, Pacific J. Math., 216 (2004), 63-76.  doi: 10.2140/pjm.2004.216.63.  Google Scholar

[11]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.  Google Scholar

[12]

X. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stoch. Anal. Appl., 25 (2007), 381-396.  doi: 10.1080/07362990601139602.  Google Scholar

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar

[14]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.  Google Scholar

[15]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[16]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.  doi: 10.1016/j.jde.2006.09.024.  Google Scholar

[17]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[18]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[21]

B. Wang and X. Gao, Random attractors for wave equations on unbounded domains, Discr. Contin. Dyn. Syst. Supplement, (2009), 800–809. doi: 10.3934/proc.2009.2009.800.  Google Scholar

[22]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[23]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[24]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[25]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms Stochastics and Dynamics 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099.  Google Scholar

[26]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[27]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[28]

Z. WangS. Zhou and A. Gu, Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1649-1658.  doi: 10.1016/j.cnsns.2011.09.001.  Google Scholar

[29]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387.  doi: 10.11948/2015031.  Google Scholar

[30]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[31]

S. ZhouF. Yin and Z. Ouyang, Random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst., 4 (2005), 883-903.  doi: 10.1137/050623097.  Google Scholar

[32]

S. Zhou and M. Zhao, Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation, Nonlinear. Anal., 133 (2016), 292-318.  doi: 10.1016/j.na.2015.12.013.  Google Scholar

[33]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic damped wave equation with multiplicative noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914.  doi: 10.3934/dcds.2016.36.2887.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

P. Chow, Stochastic wave equation with polynomial nonlinearity, Ann. Appl. Probab, 12 (2002), 361-381.  doi: 10.1214/aoap/1015961168.  Google Scholar

[4]

I. Chueshov, Monotone Random Systems Theory and Applications Springer-Verlag, New York, 2002. doi: 10.1007/b83277.  Google Scholar

[5]

H. Crauel, Random Probability Measure on Polish Spaces Taylor & Francis, London, 2002. doi: 10.4324/9780203219119.  Google Scholar

[6]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[8]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics and Dynamics, 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[9]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[10]

X. Fan, Random attractor for a damped sine-Gordon equation with white noise, Pacific J. Math., 216 (2004), 63-76.  doi: 10.2140/pjm.2004.216.63.  Google Scholar

[11]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.  Google Scholar

[12]

X. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stoch. Anal. Appl., 25 (2007), 381-396.  doi: 10.1080/07362990601139602.  Google Scholar

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar

[14]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.  Google Scholar

[15]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[16]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.  doi: 10.1016/j.jde.2006.09.024.  Google Scholar

[17]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[18]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[21]

B. Wang and X. Gao, Random attractors for wave equations on unbounded domains, Discr. Contin. Dyn. Syst. Supplement, (2009), 800–809. doi: 10.3934/proc.2009.2009.800.  Google Scholar

[22]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[23]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[24]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[25]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms Stochastics and Dynamics 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099.  Google Scholar

[26]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[27]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[28]

Z. WangS. Zhou and A. Gu, Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1649-1658.  doi: 10.1016/j.cnsns.2011.09.001.  Google Scholar

[29]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387.  doi: 10.11948/2015031.  Google Scholar

[30]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[31]

S. ZhouF. Yin and Z. Ouyang, Random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst., 4 (2005), 883-903.  doi: 10.1137/050623097.  Google Scholar

[32]

S. Zhou and M. Zhao, Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation, Nonlinear. Anal., 133 (2016), 292-318.  doi: 10.1016/j.na.2015.12.013.  Google Scholar

[33]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic damped wave equation with multiplicative noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914.  doi: 10.3934/dcds.2016.36.2887.  Google Scholar

[1]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[6]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[7]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[8]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[12]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[13]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (61)
  • HTML views (58)
  • Cited by (2)

Other articles
by authors

[Back to Top]