
- Previous Article
- DCDS Home
- This Issue
-
Next Article
On the limit quasi-shadowing property
Persistence and stationary distribution of a stochastic predator-prey model under regime switching
1. | College of Mathematics and Statistics, Hainan Normal University, Hainan 571158, China |
2. | School of Science, China University of Petroleum (East China), Qingdao 266580, China |
3. | Nonlinear Analysis and Applied Mathematics(NAAM)-Research Group, King Abdulaziz University, Jeddah, Saudi Arabia |
4. | School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland |
Taking both white noise and colored environment noise into account, a predator-prey model is proposed. In this paper, our main aim is to study the stationary distribution of the solution and obtain the threshold between persistence in mean and the extinction of the stochastic system with regime switching. Some simulation figures are presented to support the analytical findings.
References:
[1] |
G. Q. Cai and Y. K. Lin,
Stochastic analysis of predator-prey type ecosystems, Ecol. Complex., 4 (2007), 242-249.
doi: 10.1016/j.ecocom.2007.06.011. |
[2] |
L. S. Chen and Z. J. Jing,
The existence and uniqueness of limit cycles for the differential equations of predator-prey interactions, Chinese Sci. Bull., 9 (1984), 521-523.
|
[3] |
H. W. Hethcote, W. Wang, L. T. Han and Z. E. Ma,
A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010. |
[4] |
C. Y. Ji, D. Q. Jiang and N. Z. Shi,
A note on a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 377 (2011), 435-440.
doi: 10.1016/j.jmaa.2010.11.008. |
[5] |
R. Z. Khasminskii, C. Zhu and G. Yin,
Stability of regime-switching diffusions, Stochastic Process. Appl., 117 (2007), 1037-1051.
doi: 10.1016/j.spa.2006.12.001. |
[6] |
H. H. Li, D. Q. Jiang, F. Z. Cong and H. X. Li, Persistence and non-persistence of a predator-prey system with stochastic perturbation Abstr. Appl. Anal. 2014 (2014), Article ID 720283, 10 pages.
doi: 10.1155/2014/720283. |
[7] |
X. Y. Li, D. Q. Jiang and X. R. Mao,
Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427-448.
doi: 10.1016/j.cam.2009.06.021. |
[8] |
X. Y. Li, A. Gray, D. Q. Jiang and X. R. Mao,
Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28.
doi: 10.1016/j.jmaa.2010.10.053. |
[9] |
X. Y. Li and X. R. Mao,
A note on almost sure asymptotic stability of neutral stochastic delay differential equations with Markovian switching, Automatica, 48 (2012), 2329-2334.
doi: 10.1016/j.automatica.2012.06.045. |
[10] |
H. Liu, Q. S. Yang and D. Q. Jiang,
The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences, Automatica, 48 (2012), 820-825.
doi: 10.1016/j.automatica.2012.02.010. |
[11] |
H. Liu, X. X. Li and Q. S. Yang,
The ergodic property and positive recurrence of a multi-group Lotka-Volterra mutualistic system with regime switching, Syst. Control Lett., 62 (2013), 805-810.
doi: 10.1016/j.sysconle.2013.06.002. |
[12] |
M. Liu and K. Wang,
Asymptotic properties and simulations of a stochastic logistic model under regime switching Ⅱ, Math. Comput. Model., 55 (2012), 405-418.
doi: 10.1016/j.mcm.2011.08.019. |
[13] |
M. Liu and K. Wang,
Asymptotic properties and simulations of a stochastic logistic model under regime switching, Math. Comput. Model., 54 (2011), 2139-2154.
doi: 10.1016/j.mcm.2011.05.023. |
[14] |
X. R. Mao, S. Sabanis and E. Renshaw,
Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156.
doi: 10.1016/S0022-247X(03)00539-0. |
[15] |
X. R. Mao,
Stationary distribution of stochastic population systems, Syst. Control Lett., 60 (2011), 398-405.
doi: 10.1016/j.sysconle.2011.02.013. |
[16] |
X. R. Mao and C. G. Yuan, Stochastic Differential Equations with Markovian Switching Imperial College Press, London, 2006. |
[17] |
R. M. Nisbet and W. S. C. Gurney, Modelling Fluctuating Populations Wiley-Interscience, New York, 1982. |
[18] |
E. C. Pielou, Introduction to Mathematical Ecology Wiley-Interscience, New York, 1969. |
[19] |
A. Settati and A. Lahrouz,
Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 244 (2014), 235-243.
doi: 10.1016/j.amc.2014.07.012. |
[20] |
Y. Takeuchi, N. H. Dub, N. T. Hieu and K. Satoa,
Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957.
doi: 10.1016/j.jmaa.2005.11.009. |
[21] |
D. Y. Xu, B. Li, S. J. Long and L. Y. Teng,
Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Anal., 108 (2014), 128-143.
doi: 10.1016/j.na.2014.05.004. |
[22] |
D. Y. Xu, X. H. Wang and Z. G. Yang,
Further results on existence-uniqueness for stochastic functional differential equations, Sci. China Math., 56 (2013), 1169-1180.
doi: 10.1007/s11425-012-4553-1. |
[23] |
T. Zhao, Y. Kung and H. L. Smith,
Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems, Nonlinear Anal. Theor., 28 (1997), 1373-1394.
doi: 10.1016/0362-546X(95)00230-S. |
[24] |
C. Zhu and G. Yin,
Asymptotic properties of hybrid diffusion systems, Siam. J. Control Optim., 46 (2007), 1155-1179.
doi: 10.1137/060649343. |
[25] |
L. Zu, D. Q. Jiang and D. O'Regan,
Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regimes witching, Commun. Nonlinear Sci. Numer. Simul., 29 (2015), 1-11.
doi: 10.1016/j.cnsns.2015.04.008. |
show all references
References:
[1] |
G. Q. Cai and Y. K. Lin,
Stochastic analysis of predator-prey type ecosystems, Ecol. Complex., 4 (2007), 242-249.
doi: 10.1016/j.ecocom.2007.06.011. |
[2] |
L. S. Chen and Z. J. Jing,
The existence and uniqueness of limit cycles for the differential equations of predator-prey interactions, Chinese Sci. Bull., 9 (1984), 521-523.
|
[3] |
H. W. Hethcote, W. Wang, L. T. Han and Z. E. Ma,
A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010. |
[4] |
C. Y. Ji, D. Q. Jiang and N. Z. Shi,
A note on a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 377 (2011), 435-440.
doi: 10.1016/j.jmaa.2010.11.008. |
[5] |
R. Z. Khasminskii, C. Zhu and G. Yin,
Stability of regime-switching diffusions, Stochastic Process. Appl., 117 (2007), 1037-1051.
doi: 10.1016/j.spa.2006.12.001. |
[6] |
H. H. Li, D. Q. Jiang, F. Z. Cong and H. X. Li, Persistence and non-persistence of a predator-prey system with stochastic perturbation Abstr. Appl. Anal. 2014 (2014), Article ID 720283, 10 pages.
doi: 10.1155/2014/720283. |
[7] |
X. Y. Li, D. Q. Jiang and X. R. Mao,
Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427-448.
doi: 10.1016/j.cam.2009.06.021. |
[8] |
X. Y. Li, A. Gray, D. Q. Jiang and X. R. Mao,
Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28.
doi: 10.1016/j.jmaa.2010.10.053. |
[9] |
X. Y. Li and X. R. Mao,
A note on almost sure asymptotic stability of neutral stochastic delay differential equations with Markovian switching, Automatica, 48 (2012), 2329-2334.
doi: 10.1016/j.automatica.2012.06.045. |
[10] |
H. Liu, Q. S. Yang and D. Q. Jiang,
The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences, Automatica, 48 (2012), 820-825.
doi: 10.1016/j.automatica.2012.02.010. |
[11] |
H. Liu, X. X. Li and Q. S. Yang,
The ergodic property and positive recurrence of a multi-group Lotka-Volterra mutualistic system with regime switching, Syst. Control Lett., 62 (2013), 805-810.
doi: 10.1016/j.sysconle.2013.06.002. |
[12] |
M. Liu and K. Wang,
Asymptotic properties and simulations of a stochastic logistic model under regime switching Ⅱ, Math. Comput. Model., 55 (2012), 405-418.
doi: 10.1016/j.mcm.2011.08.019. |
[13] |
M. Liu and K. Wang,
Asymptotic properties and simulations of a stochastic logistic model under regime switching, Math. Comput. Model., 54 (2011), 2139-2154.
doi: 10.1016/j.mcm.2011.05.023. |
[14] |
X. R. Mao, S. Sabanis and E. Renshaw,
Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156.
doi: 10.1016/S0022-247X(03)00539-0. |
[15] |
X. R. Mao,
Stationary distribution of stochastic population systems, Syst. Control Lett., 60 (2011), 398-405.
doi: 10.1016/j.sysconle.2011.02.013. |
[16] |
X. R. Mao and C. G. Yuan, Stochastic Differential Equations with Markovian Switching Imperial College Press, London, 2006. |
[17] |
R. M. Nisbet and W. S. C. Gurney, Modelling Fluctuating Populations Wiley-Interscience, New York, 1982. |
[18] |
E. C. Pielou, Introduction to Mathematical Ecology Wiley-Interscience, New York, 1969. |
[19] |
A. Settati and A. Lahrouz,
Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 244 (2014), 235-243.
doi: 10.1016/j.amc.2014.07.012. |
[20] |
Y. Takeuchi, N. H. Dub, N. T. Hieu and K. Satoa,
Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957.
doi: 10.1016/j.jmaa.2005.11.009. |
[21] |
D. Y. Xu, B. Li, S. J. Long and L. Y. Teng,
Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Anal., 108 (2014), 128-143.
doi: 10.1016/j.na.2014.05.004. |
[22] |
D. Y. Xu, X. H. Wang and Z. G. Yang,
Further results on existence-uniqueness for stochastic functional differential equations, Sci. China Math., 56 (2013), 1169-1180.
doi: 10.1007/s11425-012-4553-1. |
[23] |
T. Zhao, Y. Kung and H. L. Smith,
Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems, Nonlinear Anal. Theor., 28 (1997), 1373-1394.
doi: 10.1016/0362-546X(95)00230-S. |
[24] |
C. Zhu and G. Yin,
Asymptotic properties of hybrid diffusion systems, Siam. J. Control Optim., 46 (2007), 1155-1179.
doi: 10.1137/060649343. |
[25] |
L. Zu, D. Q. Jiang and D. O'Regan,
Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regimes witching, Commun. Nonlinear Sci. Numer. Simul., 29 (2015), 1-11.
doi: 10.1016/j.cnsns.2015.04.008. |


[1] |
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 |
[2] |
Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 |
[3] |
Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176 |
[4] |
Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 |
[5] |
Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167 |
[6] |
Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure and Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005 |
[7] |
Yanfei Du, Ben Niu, Junjie Wei. A predator-prey model with cooperative hunting in the predator and group defense in the prey. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021298 |
[8] |
Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299 |
[9] |
Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807 |
[10] |
Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081 |
[11] |
Yu-Shuo Chen, Jong-Shenq Guo, Masahiko Shimojo. Recent developments on a singular predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1811-1825. doi: 10.3934/dcdsb.2020040 |
[12] |
Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265 |
[13] |
Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289 |
[14] |
Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247 |
[15] |
Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177 |
[16] |
Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2949-2973. doi: 10.3934/dcdss.2020132 |
[17] |
Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082 |
[18] |
Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021 |
[19] |
Baifeng Zhang, Guohong Zhang, Xiaoli Wang. Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021260 |
[20] |
Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]