In this paper, we prove the scattering of radial solutions to high dimensional energy-critical nonlinear Schrödinger equations with regular potentials in the defocusing case.
Citation: |
P. Alsholm
and G. Schmidt
, Spectral and scattering theory for Schrödinger operators, Arch. Rational Mech. Anal, 40 (1971)
, 281-311.
doi: 10.1007/BF00252679.![]() ![]() ![]() |
|
P. Antonelli
, R. Carles
and J. D. Silva
, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015)
, 367-396.
doi: 10.1007/s00220-014-2166-y.![]() ![]() ![]() |
|
V. Banica
and N. Visciglia
, Scattering for non linear Schrödinger equation with a delta potential, J. Differential Equations, 260 (2016)
, 4410-4439.
doi: 10.1016/j.jde.2015.11.016.![]() ![]() ![]() |
|
M. Beceanu
and M. Goldberg
, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys., 314 (2012)
, 471-481.
doi: 10.1007/s00220-012-1435-x.![]() ![]() ![]() |
|
J. Bourgain
, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999)
, 145-171.
doi: 10.1090/S0894-0347-99-00283-0.![]() ![]() ![]() |
|
P. Chen, J. Magniez and E. M. Ouhabaz,
Riesz transforms on non-compact manifolds, arXiv: 1411.0137.
![]() |
|
J. Colliander
, M. Czubak
and J. Lee
, Interaction Morawetz estimate for the magnetic Schrödinger equation and applications, Adv. Differential Equations, 19 (2014)
, 805-832.
![]() ![]() |
|
J. Colliander
, M. Keel
, G. Staffilani
, H. Takaoka
and T. Tao
, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^3$, Ann. of Math., 167 (2008)
, 767-865.
doi: 10.4007/annals.2008.167.767.![]() ![]() ![]() |
|
S. Cuccagna
, V. Georgiev
and N. Visciglia
, Decay and scattering of small solutions of pure power NLS in $\mathbb{R}$ with p>3 and with a potential, Comm. Pure Appl. Math., 67 (2014)
, 957-981.
doi: 10.1002/cpa.21465.![]() ![]() ![]() |
|
P. D'ancona
, L. Fanelli
, L. Vega
and N. Visciglia
, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010)
, 3227-3240.
doi: 10.1016/j.jfa.2010.02.007.![]() ![]() ![]() |
|
P. D'ancona
and V. Pierfelice
, On the wave equation with a large rough potential, J. Funct. Anal., 227 (2005)
, 30-77.
doi: 10.1016/j.jfa.2005.05.013.![]() ![]() ![]() |
|
B. Dodson
, Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d ≥ 3, J. Amer. Math. Soc., 25 (2012)
, 429-463.
doi: 10.1090/S0894-0347-2011-00727-3.![]() ![]() ![]() |
|
B. Dodson
, Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 2, Duke Math. J., 165 (2016)
, no. 18,3435-3516.
doi: 10.1090/S0894-0347-2011-00727-3.![]() ![]() |
|
B. Dodson,
Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 1 to appear in
Amer. J. Math. , arXiv: 1010.0040.
doi: 10.1090/S0894-0347-2011-00727-3.![]() ![]() |
|
B. Dodson
, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Advances in Mathematics, 285 (2015)
, 1589-1618.
doi: 10.1016/j.aim.2015.04.030.![]() ![]() |
|
B. Dodson,
Global well-posedness and scattering for the focusing, energy-critical nonlinear Schrödinger problem in dimension d = 4 for initial data below a ground state threshold,
arXiv: 1409. 1950.
![]() |
|
J. Ginibre
, T. Ozawa
and G. Velo
, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincare Phys. Theor., 60 (1994)
, 211-239.
![]() ![]() |
|
J. Ginibre
and G. Velo
, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl.(9), 64 (1985)
, 363-401.
![]() ![]() |
|
R. H. Goodman
, R. E. Slusher
and M. I. Weinstein
, Stopping light on a defect, J. Opt. Soc. Am. B, 19 (2002)
, 1635-1652.
doi: 10.1364/JOSAB.19.001635.![]() ![]() |
|
R. H. Goodman
, M. I. Weinstein
and P. J. Holmes
, Nonlinear propagation of light in one-dimensional periodic structures, J. Nonlinear Sci., 11 (2001)
, 123-168.
doi: 10.1007/s00332-001-0002-y.![]() ![]() ![]() |
|
Z. Hani
and L. Thomann
, Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping, Comm. Pure Appl. Math., 69 (2016)
, 1727-1776.
doi: 10.1002/cpa.21594.![]() ![]() ![]() |
|
K. Hepp
, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974)
, 265-277.
doi: 10.1007/BF01646348.![]() ![]() ![]() |
|
Y. Hong
, Scattering for a nonlinear Schrödinger equation with a potential, Comm. Pure Appl. Anal., 15 (2016)
, 1571-1601.
doi: 10.3934/cpaa.2016003.![]() ![]() |
|
S. Ibrahim
, N. Masmoudi
and K. Nakanishi
, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011)
, 405-460.
doi: 10.2140/apde.2011.4.405.![]() ![]() ![]() |
|
J. L. Journe
, A. Soffer
and C. D. Sogge
, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991)
, 573-604.
doi: 10.1002/cpa.3160440504.![]() ![]() ![]() |
|
M. Keel
and T. Tao
, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998)
, 955-980.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
|
S. Keraani
, On the defect of compactness for the Strichartz estimates for the Schrödinger equations, J. Differential Equations, 175 (2001)
, 353-392.
doi: 10.1006/jdeq.2000.3951.![]() ![]() ![]() |
|
C. E. Kenig
and F. Merle
, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006)
, 645-675.
doi: 10.1007/s00222-006-0011-4.![]() ![]() ![]() |
|
R. Killip
and M. Visan
, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010)
, 361-424.
doi: 10.1353/ajm.0.0107.![]() ![]() ![]() |
|
R. Killip
, M. Visan
and X. Zhang
, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Analysis and PDE, 1 (2009)
, 229-266.
doi: 10.2140/apde.2008.1.229.![]() ![]() ![]() |
|
D. Lafontaine
, Scattering for NLS with a potential on the line, Asymptotic Analysis, 100 (2016)
, 21-39.
doi: 10.3233/ASY-161384.![]() ![]() ![]() |
|
E. H. Lieb
, R. Seiringer
and J. Yngvason
, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys., 224 (2001)
, 17-31.
doi: 10.1007/s002200100533.![]() ![]() ![]() |
|
H. P. McKean
and J. Shatah
, The nonlinear Schrödinger equation and the nonlinear heat equation reduction to linear form, Comm. Pure Appl. Math., 44 (1991)
, 1067-1080.
doi: 10.1002/cpa.3160440817.![]() ![]() ![]() |
|
K. Nakanishi
, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, Journal of Functional Analysis, 169 (1999)
, 201-225.
doi: 10.1006/jfan.1999.3503.![]() ![]() ![]() |
|
F. Planchon
and L. Vega
, Bilinear virial identities and applications, Ann. Sci. Ec. Norm. Super., 42 (2009)
, 261-290.
![]() ![]() |
|
I. Rodnianski
and W. Schlag
, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004)
, 451-513.
doi: 10.1007/s00222-003-0325-4.![]() ![]() ![]() |
|
E. Ryckman
and M. Visan
, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{1+4}$, Amer. J. Math., 129 (2007)
, 1-60.
doi: 10.1353/ajm.2007.0004.![]() ![]() ![]() |
|
W. Schlag
, Dispersive estimates for Schrödinger operators: A survey, Ann. of Math. Stud., 163 (2007)
, 255-285.
![]() ![]() |
|
A. Soffer
and M. I. Weinstein
, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999)
, 9-74.
doi: 10.1007/s002220050303.![]() ![]() ![]() |
|
H. Spohn
, Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys., 52 (1980)
, 569-615.
doi: 10.1103/RevModPhys.52.569.![]() ![]() ![]() |
|
W. Strauss, Nonlinear scattering theory. Scattering theory in mathematical physics, Proceedings of the NATO Advanced Study Institue, (Denver, 1973), 53-78. NATO Advanced Science Institues, Volume C9. Reidel, Dordrecht, 1974.
![]() |
|
W. Strauss
, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981)
, 281-293.
doi: 10.1016/0022-1236(81)90019-7.![]() ![]() ![]() |
|
T. Tao,
Nonlinear Dispersive Equations: Local and Global Analysis
American Mathematical Society, 2006.
doi: 10.1090/cbms/106.![]() ![]() ![]() |
|
T. Tao
, M. Visan
and X. Zhang
, Minimal-mass blowup solutions of the mass-critical NLS, Forum Mathematicum, 20 (2008)
, 881-919.
doi: 10.1515/FORUM.2008.042.![]() ![]() ![]() |
|
T. Tao
, M. Visan
and X. Zhang
, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math J., 140 (2007)
, 165-202.
doi: 10.1215/S0012-7094-07-14015-8.![]() ![]() ![]() |
|
M. C. Vilela
, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007)
, 2123-2136.
doi: 10.1090/S0002-9947-06-04099-2.![]() ![]() ![]() |
|
N. Visciglia
, On the decay of solutions to a class of defocusing NLS, Math. Res. Lett., 16 (2009)
, 919-926.
doi: 10.4310/MRL.2009.v16.n5.a14.![]() ![]() ![]() |
|
M. Visan
, The defocusing energy-critical nonlinear Schrödinger equation in higher dimemsions, Duke Math. J., 138 (2007)
, 281-374.
doi: 10.1215/S0012-7094-07-13825-0.![]() ![]() ![]() |