In this paper, we prove the scattering of radial solutions to high dimensional energy-critical nonlinear Schrödinger equations with regular potentials in the defocusing case.
Citation: |
P. Alsholm and G. Schmidt , Spectral and scattering theory for Schrödinger operators, Arch. Rational Mech. Anal, 40 (1971) , 281-311. doi: 10.1007/BF00252679. | |
P. Antonelli , R. Carles and J. D. Silva , Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015) , 367-396. doi: 10.1007/s00220-014-2166-y. | |
V. Banica and N. Visciglia , Scattering for non linear Schrödinger equation with a delta potential, J. Differential Equations, 260 (2016) , 4410-4439. doi: 10.1016/j.jde.2015.11.016. | |
M. Beceanu and M. Goldberg , Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys., 314 (2012) , 471-481. doi: 10.1007/s00220-012-1435-x. | |
J. Bourgain , Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999) , 145-171. doi: 10.1090/S0894-0347-99-00283-0. | |
P. Chen, J. Magniez and E. M. Ouhabaz, Riesz transforms on non-compact manifolds, arXiv: 1411.0137. | |
J. Colliander , M. Czubak and J. Lee , Interaction Morawetz estimate for the magnetic Schrödinger equation and applications, Adv. Differential Equations, 19 (2014) , 805-832. | |
J. Colliander , M. Keel , G. Staffilani , H. Takaoka and T. Tao , Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^3$, Ann. of Math., 167 (2008) , 767-865. doi: 10.4007/annals.2008.167.767. | |
S. Cuccagna , V. Georgiev and N. Visciglia , Decay and scattering of small solutions of pure power NLS in $\mathbb{R}$ with p>3 and with a potential, Comm. Pure Appl. Math., 67 (2014) , 957-981. doi: 10.1002/cpa.21465. | |
P. D'ancona , L. Fanelli , L. Vega and N. Visciglia , Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010) , 3227-3240. doi: 10.1016/j.jfa.2010.02.007. | |
P. D'ancona and V. Pierfelice , On the wave equation with a large rough potential, J. Funct. Anal., 227 (2005) , 30-77. doi: 10.1016/j.jfa.2005.05.013. | |
B. Dodson , Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d ≥ 3, J. Amer. Math. Soc., 25 (2012) , 429-463. doi: 10.1090/S0894-0347-2011-00727-3. | |
B. Dodson , Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 2, Duke Math. J., 165 (2016) , no. 18,3435-3516. doi: 10.1090/S0894-0347-2011-00727-3. | |
B. Dodson, Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 1 to appear in Amer. J. Math. , arXiv: 1010.0040. doi: 10.1090/S0894-0347-2011-00727-3. | |
B. Dodson , Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Advances in Mathematics, 285 (2015) , 1589-1618. doi: 10.1016/j.aim.2015.04.030. | |
B. Dodson, Global well-posedness and scattering for the focusing, energy-critical nonlinear Schrödinger problem in dimension d = 4 for initial data below a ground state threshold, arXiv: 1409. 1950. | |
J. Ginibre , T. Ozawa and G. Velo , On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincare Phys. Theor., 60 (1994) , 211-239. | |
J. Ginibre and G. Velo , Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl.(9), 64 (1985) , 363-401. | |
R. H. Goodman , R. E. Slusher and M. I. Weinstein , Stopping light on a defect, J. Opt. Soc. Am. B, 19 (2002) , 1635-1652. doi: 10.1364/JOSAB.19.001635. | |
R. H. Goodman , M. I. Weinstein and P. J. Holmes , Nonlinear propagation of light in one-dimensional periodic structures, J. Nonlinear Sci., 11 (2001) , 123-168. doi: 10.1007/s00332-001-0002-y. | |
Z. Hani and L. Thomann , Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping, Comm. Pure Appl. Math., 69 (2016) , 1727-1776. doi: 10.1002/cpa.21594. | |
K. Hepp , The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974) , 265-277. doi: 10.1007/BF01646348. | |
Y. Hong , Scattering for a nonlinear Schrödinger equation with a potential, Comm. Pure Appl. Anal., 15 (2016) , 1571-1601. doi: 10.3934/cpaa.2016003. | |
S. Ibrahim , N. Masmoudi and K. Nakanishi , Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011) , 405-460. doi: 10.2140/apde.2011.4.405. | |
J. L. Journe , A. Soffer and C. D. Sogge , Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991) , 573-604. doi: 10.1002/cpa.3160440504. | |
M. Keel and T. Tao , Endpoint Strichartz estimates, Amer. J. Math., 120 (1998) , 955-980. doi: 10.1353/ajm.1998.0039. | |
S. Keraani , On the defect of compactness for the Strichartz estimates for the Schrödinger equations, J. Differential Equations, 175 (2001) , 353-392. doi: 10.1006/jdeq.2000.3951. | |
C. E. Kenig and F. Merle , Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006) , 645-675. doi: 10.1007/s00222-006-0011-4. | |
R. Killip and M. Visan , The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010) , 361-424. doi: 10.1353/ajm.0.0107. | |
R. Killip , M. Visan and X. Zhang , The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Analysis and PDE, 1 (2009) , 229-266. doi: 10.2140/apde.2008.1.229. | |
D. Lafontaine , Scattering for NLS with a potential on the line, Asymptotic Analysis, 100 (2016) , 21-39. doi: 10.3233/ASY-161384. | |
E. H. Lieb , R. Seiringer and J. Yngvason , A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys., 224 (2001) , 17-31. doi: 10.1007/s002200100533. | |
H. P. McKean and J. Shatah , The nonlinear Schrödinger equation and the nonlinear heat equation reduction to linear form, Comm. Pure Appl. Math., 44 (1991) , 1067-1080. doi: 10.1002/cpa.3160440817. | |
K. Nakanishi , Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, Journal of Functional Analysis, 169 (1999) , 201-225. doi: 10.1006/jfan.1999.3503. | |
F. Planchon and L. Vega , Bilinear virial identities and applications, Ann. Sci. Ec. Norm. Super., 42 (2009) , 261-290. | |
I. Rodnianski and W. Schlag , Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004) , 451-513. doi: 10.1007/s00222-003-0325-4. | |
E. Ryckman and M. Visan , Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{1+4}$, Amer. J. Math., 129 (2007) , 1-60. doi: 10.1353/ajm.2007.0004. | |
W. Schlag , Dispersive estimates for Schrödinger operators: A survey, Ann. of Math. Stud., 163 (2007) , 255-285. | |
A. Soffer and M. I. Weinstein , Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999) , 9-74. doi: 10.1007/s002220050303. | |
H. Spohn , Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys., 52 (1980) , 569-615. doi: 10.1103/RevModPhys.52.569. | |
W. Strauss, Nonlinear scattering theory. Scattering theory in mathematical physics, Proceedings of the NATO Advanced Study Institue, (Denver, 1973), 53-78. NATO Advanced Science Institues, Volume C9. Reidel, Dordrecht, 1974. | |
W. Strauss , Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981) , 281-293. doi: 10.1016/0022-1236(81)90019-7. | |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis American Mathematical Society, 2006. doi: 10.1090/cbms/106. | |
T. Tao , M. Visan and X. Zhang , Minimal-mass blowup solutions of the mass-critical NLS, Forum Mathematicum, 20 (2008) , 881-919. doi: 10.1515/FORUM.2008.042. | |
T. Tao , M. Visan and X. Zhang , Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math J., 140 (2007) , 165-202. doi: 10.1215/S0012-7094-07-14015-8. | |
M. C. Vilela , Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007) , 2123-2136. doi: 10.1090/S0002-9947-06-04099-2. | |
N. Visciglia , On the decay of solutions to a class of defocusing NLS, Math. Res. Lett., 16 (2009) , 919-926. doi: 10.4310/MRL.2009.v16.n5.a14. | |
M. Visan , The defocusing energy-critical nonlinear Schrödinger equation in higher dimemsions, Duke Math. J., 138 (2007) , 281-374. doi: 10.1215/S0012-7094-07-13825-0. |