June  2017, 37(6): 3025-3057. doi: 10.3934/dcds.2017130

A p-Laplacian supercritical Neumann problem

Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine -CP214, boulevard du Triomphe, 1050 Bruxelles, Belgique

* Corresponding author

Received  November 2016 Revised  January 2017 Published  February 2017

For p > 2, we consider the quasilinear equation $-\Delta_p u+|u|^{p-2}u=g(u)$ in the unit ball B of $\mathbb R^N$, with homogeneous Neumann boundary conditions. The assumptions on g are very mild and allow the nonlinearity to be possibly supercritical in the sense of Sobolev embeddings. We prove the existence of a nonconstant, positive, radially nondecreasing solution via variational methods. In the case $g(u)=|u|^{q-2}u$, we detect the asymptotic behavior of these solutions as $q\to \infty$.

Citation: Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130
References:
[1]

S. AizicoviciN. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4), 188 (2009), 679-719.  doi: 10.1007/s10231-009-0096-7.  Google Scholar

[2]

G. Anello, Existence of infinitely many weak solutions for a Neumann problem, Nonlinear Anal., 57 (2004), 199-209.  doi: 10.1016/j.na.2004.02.009.  Google Scholar

[3]

T. BartschZ. Liu and T. Weth, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc., 91 (2005), 129-152.  doi: 10.1112/S0024611504015187.  Google Scholar

[4]

T. Bartsch and Z. Liu, On a superlinear elliptic p-Laplacian equation, J. Differential Equations, 198 (2004), 149-175.  doi: 10.1016/j.jde.2003.08.001.  Google Scholar

[5]

G. Bognár and P. Drábek, The p-Laplacian equation with superlinear and supercritical growth, multiplicity of radial solutions, Nonlinear Anal., 60 (2005), 719-728.  doi: 10.1016/j.na.2004.09.047.  Google Scholar

[6]

G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80 (2003), 424-429.  doi: 10.1007/s00013-003-0479-8.  Google Scholar

[7]

J. F. Bonder and J. D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl., 263 (2001), 195-223.  doi: 10.1006/jmaa.2001.7609.  Google Scholar

[8]

D. BonheureB. Noris and T. Weth, Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 573-588.  doi: 10.1016/j.anihpc.2012.02.002.  Google Scholar

[9]

D. Bonheure and E. Serra, Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 217-235.  doi: 10.1007/s00030-010-0092-z.  Google Scholar

[10]

D. Bonheure, J. -B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system, preprint, arXiv: 1603.07374. Google Scholar

[11]

D. BonheureM. GrossiB. Noris and S. Terracini, Multi-layer radial solutions for a supercritical Neumann problem, J. Differential Equations, 261 (2016), 455-504.  doi: 10.1016/j.jde.2016.03.016.  Google Scholar

[12]

D. BonheureC. Grumiau and C. Troestler, Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions, Nonlinear Anal., 147 (2016), 236-273.  doi: 10.1016/j.na.2016.09.010.  Google Scholar

[13]

D. BonheureE. Serra and P. Tilli, Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal., 265 (2013), 375-398.  doi: 10.1016/j.jfa.2013.05.027.  Google Scholar

[14]

A. Boscaggin and W. Dambrosio, Highly oscillatory solutions of a Neumann problem for a p-Laplacian equation, Nonlinear Anal., 122 (2015), 58-82.  doi: 10.1016/j.na.2015.03.020.  Google Scholar

[15]

M. Clapp and S. Tiwari, Multiple solutions to a pure supercritical problem for the p-Laplacian, Calc. Var. Partial Differential Equations, 55 (2016), 1-23.  doi: 10.1007/s00526-015-0949-4.  Google Scholar

[16]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493-516.  doi: 10.1016/S0294-1449(98)80032-2.  Google Scholar

[17]

L. DamascelliF. Pacella and M. Ramaswamy, Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Rational Mech. Anal., 148 (1999), 291-308.  doi: 10.1007/s002050050163.  Google Scholar

[18]

F. Faraci, Multiplicity results for a Neumann problem involving the p-Laplacian, J. Math. Anal. Appl., 277 (2003), 180-189.  doi: 10.1016/S0022-247X(02)00530-9.  Google Scholar

[19]

M. FilippakisL. Gasiński and N. S. Papageorgiou, Multiplicity results for nonlinear Neumann problems, Canad. J. Math., 58 (2006), 64-92.  doi: 10.4153/CJM-2006-004-6.  Google Scholar

[20]

M. Grossi, Asymptotic behaviour of the Kazdan-{W}arner solution in the annulus, J. Differential Equations, 223 (2006), 96-111.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar

[21]

M. Grossi and B. Noris, Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., 140 (2012), 2141-2154.  doi: 10.1090/S0002-9939-2011-11133-X.  Google Scholar

[22]

L. IturriagaS. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 763-771.  doi: 10.1016/j.anihpc.2009.11.003.  Google Scholar

[23]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[24]

P. Lindqvist, Notes on the p-Laplace Equation, Univ., 2006.  Google Scholar

[25]

D. MotreanuV. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance, Indiana Univ. Math. J., 58 (2009), 1257-1279.  doi: 10.1512/iumj.2009.58.3565.  Google Scholar

[26]

P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[27]

B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc., 33 (2001), 331-340.  doi: 10.1017/S0024609301008001.  Google Scholar

[28]

S. Secchi, Increasing variational solutions for a nonlinear p-Laplace equation without growth conditions, Ann. Mat. Pura Appl., 191 (2012), 469-485.  doi: 10.1007/s10231-011-0191-4.  Google Scholar

[29]

E. Serra and P. Tilli, Monotonicity constraints and supercritical Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 63-74.  doi: 10.1016/j.anihpc.2010.10.003.  Google Scholar

[30]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[31]

X. Wu and K.-K. Tan, On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations, Nonlinear Anal., 65 (2006), 1334-1347.  doi: 10.1016/j.na.2005.10.010.  Google Scholar

show all references

References:
[1]

S. AizicoviciN. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4), 188 (2009), 679-719.  doi: 10.1007/s10231-009-0096-7.  Google Scholar

[2]

G. Anello, Existence of infinitely many weak solutions for a Neumann problem, Nonlinear Anal., 57 (2004), 199-209.  doi: 10.1016/j.na.2004.02.009.  Google Scholar

[3]

T. BartschZ. Liu and T. Weth, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc., 91 (2005), 129-152.  doi: 10.1112/S0024611504015187.  Google Scholar

[4]

T. Bartsch and Z. Liu, On a superlinear elliptic p-Laplacian equation, J. Differential Equations, 198 (2004), 149-175.  doi: 10.1016/j.jde.2003.08.001.  Google Scholar

[5]

G. Bognár and P. Drábek, The p-Laplacian equation with superlinear and supercritical growth, multiplicity of radial solutions, Nonlinear Anal., 60 (2005), 719-728.  doi: 10.1016/j.na.2004.09.047.  Google Scholar

[6]

G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80 (2003), 424-429.  doi: 10.1007/s00013-003-0479-8.  Google Scholar

[7]

J. F. Bonder and J. D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl., 263 (2001), 195-223.  doi: 10.1006/jmaa.2001.7609.  Google Scholar

[8]

D. BonheureB. Noris and T. Weth, Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 573-588.  doi: 10.1016/j.anihpc.2012.02.002.  Google Scholar

[9]

D. Bonheure and E. Serra, Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 217-235.  doi: 10.1007/s00030-010-0092-z.  Google Scholar

[10]

D. Bonheure, J. -B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system, preprint, arXiv: 1603.07374. Google Scholar

[11]

D. BonheureM. GrossiB. Noris and S. Terracini, Multi-layer radial solutions for a supercritical Neumann problem, J. Differential Equations, 261 (2016), 455-504.  doi: 10.1016/j.jde.2016.03.016.  Google Scholar

[12]

D. BonheureC. Grumiau and C. Troestler, Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions, Nonlinear Anal., 147 (2016), 236-273.  doi: 10.1016/j.na.2016.09.010.  Google Scholar

[13]

D. BonheureE. Serra and P. Tilli, Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal., 265 (2013), 375-398.  doi: 10.1016/j.jfa.2013.05.027.  Google Scholar

[14]

A. Boscaggin and W. Dambrosio, Highly oscillatory solutions of a Neumann problem for a p-Laplacian equation, Nonlinear Anal., 122 (2015), 58-82.  doi: 10.1016/j.na.2015.03.020.  Google Scholar

[15]

M. Clapp and S. Tiwari, Multiple solutions to a pure supercritical problem for the p-Laplacian, Calc. Var. Partial Differential Equations, 55 (2016), 1-23.  doi: 10.1007/s00526-015-0949-4.  Google Scholar

[16]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493-516.  doi: 10.1016/S0294-1449(98)80032-2.  Google Scholar

[17]

L. DamascelliF. Pacella and M. Ramaswamy, Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Rational Mech. Anal., 148 (1999), 291-308.  doi: 10.1007/s002050050163.  Google Scholar

[18]

F. Faraci, Multiplicity results for a Neumann problem involving the p-Laplacian, J. Math. Anal. Appl., 277 (2003), 180-189.  doi: 10.1016/S0022-247X(02)00530-9.  Google Scholar

[19]

M. FilippakisL. Gasiński and N. S. Papageorgiou, Multiplicity results for nonlinear Neumann problems, Canad. J. Math., 58 (2006), 64-92.  doi: 10.4153/CJM-2006-004-6.  Google Scholar

[20]

M. Grossi, Asymptotic behaviour of the Kazdan-{W}arner solution in the annulus, J. Differential Equations, 223 (2006), 96-111.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar

[21]

M. Grossi and B. Noris, Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., 140 (2012), 2141-2154.  doi: 10.1090/S0002-9939-2011-11133-X.  Google Scholar

[22]

L. IturriagaS. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 763-771.  doi: 10.1016/j.anihpc.2009.11.003.  Google Scholar

[23]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[24]

P. Lindqvist, Notes on the p-Laplace Equation, Univ., 2006.  Google Scholar

[25]

D. MotreanuV. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance, Indiana Univ. Math. J., 58 (2009), 1257-1279.  doi: 10.1512/iumj.2009.58.3565.  Google Scholar

[26]

P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[27]

B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc., 33 (2001), 331-340.  doi: 10.1017/S0024609301008001.  Google Scholar

[28]

S. Secchi, Increasing variational solutions for a nonlinear p-Laplace equation without growth conditions, Ann. Mat. Pura Appl., 191 (2012), 469-485.  doi: 10.1007/s10231-011-0191-4.  Google Scholar

[29]

E. Serra and P. Tilli, Monotonicity constraints and supercritical Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 63-74.  doi: 10.1016/j.anihpc.2010.10.003.  Google Scholar

[30]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[31]

X. Wu and K.-K. Tan, On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations, Nonlinear Anal., 65 (2006), 1334-1347.  doi: 10.1016/j.na.2005.10.010.  Google Scholar

Figure 1.  The graph of the function $y=\left[\frac{p}{p-1}\left(\frac{x^p}p-\frac{x^q}q\right)\right]^{1/p}$ for $x,\,y\ge0$.
[1]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[2]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[3]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043

[4]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[5]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[6]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[7]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[8]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[9]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[10]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[11]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[12]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[13]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[14]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[15]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[16]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[17]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[18]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[19]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[20]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (93)
  • HTML views (54)
  • Cited by (7)

Other articles
by authors

[Back to Top]