For p > 2, we consider the quasilinear equation $-\Delta_p u+|u|^{p-2}u=g(u)$ in the unit ball B of $\mathbb R^N$, with homogeneous Neumann boundary conditions. The assumptions on g are very mild and allow the nonlinearity to be possibly supercritical in the sense of Sobolev embeddings. We prove the existence of a nonconstant, positive, radially nondecreasing solution via variational methods. In the case $g(u)=|u|^{q-2}u$, we detect the asymptotic behavior of these solutions as $q\to \infty$.
Citation: |
S. Aizicovici
, N. S. Papageorgiou
and V. Staicu
, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4), 188 (2009)
, 679-719.
doi: 10.1007/s10231-009-0096-7.![]() ![]() ![]() |
|
G. Anello
, Existence of infinitely many weak solutions for a Neumann problem, Nonlinear Anal., 57 (2004)
, 199-209.
doi: 10.1016/j.na.2004.02.009.![]() ![]() ![]() |
|
T. Bartsch
, Z. Liu
and T. Weth
, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc., 91 (2005)
, 129-152.
doi: 10.1112/S0024611504015187.![]() ![]() ![]() |
|
T. Bartsch
and Z. Liu
, On a superlinear elliptic p-Laplacian equation, J. Differential Equations, 198 (2004)
, 149-175.
doi: 10.1016/j.jde.2003.08.001.![]() ![]() ![]() |
|
G. Bognár
and P. Drábek
, The p-Laplacian equation with superlinear and supercritical growth, multiplicity of radial solutions, Nonlinear Anal., 60 (2005)
, 719-728.
doi: 10.1016/j.na.2004.09.047.![]() ![]() ![]() |
|
G. Bonanno
and P. Candito
, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80 (2003)
, 424-429.
doi: 10.1007/s00013-003-0479-8.![]() ![]() ![]() |
|
J. F. Bonder
and J. D. Rossi
, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl., 263 (2001)
, 195-223.
doi: 10.1006/jmaa.2001.7609.![]() ![]() ![]() |
|
D. Bonheure
, B. Noris
and T. Weth
, Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012)
, 573-588.
doi: 10.1016/j.anihpc.2012.02.002.![]() ![]() ![]() |
|
D. Bonheure
and E. Serra
, Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth, NoDEA Nonlinear Differential Equations Appl., 18 (2011)
, 217-235.
doi: 10.1007/s00030-010-0092-z.![]() ![]() ![]() |
|
D. Bonheure, J. -B. Casteras and B. Noris,
Multiple positive solutions of the stationary Keller-Segel system,
preprint, arXiv: 1603.07374.
![]() |
|
D. Bonheure
, M. Grossi
, B. Noris
and S. Terracini
, Multi-layer radial solutions for a supercritical Neumann problem, J. Differential Equations, 261 (2016)
, 455-504.
doi: 10.1016/j.jde.2016.03.016.![]() ![]() ![]() |
|
D. Bonheure
, C. Grumiau
and C. Troestler
, Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions, Nonlinear Anal., 147 (2016)
, 236-273.
doi: 10.1016/j.na.2016.09.010.![]() ![]() ![]() |
|
D. Bonheure
, E. Serra
and P. Tilli
, Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal., 265 (2013)
, 375-398.
doi: 10.1016/j.jfa.2013.05.027.![]() ![]() ![]() |
|
A. Boscaggin
and W. Dambrosio
, Highly oscillatory solutions of a Neumann problem for a p-Laplacian equation, Nonlinear Anal., 122 (2015)
, 58-82.
doi: 10.1016/j.na.2015.03.020.![]() ![]() ![]() |
|
M. Clapp
and S. Tiwari
, Multiple solutions to a pure supercritical problem for the p-Laplacian, Calc. Var. Partial Differential Equations, 55 (2016)
, 1-23.
doi: 10.1007/s00526-015-0949-4.![]() ![]() ![]() |
|
L. Damascelli
, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998)
, 493-516.
doi: 10.1016/S0294-1449(98)80032-2.![]() ![]() ![]() |
|
L. Damascelli
, F. Pacella
and M. Ramaswamy
, Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Rational Mech. Anal., 148 (1999)
, 291-308.
doi: 10.1007/s002050050163.![]() ![]() ![]() |
|
F. Faraci
, Multiplicity results for a Neumann problem involving the p-Laplacian, J. Math. Anal. Appl., 277 (2003)
, 180-189.
doi: 10.1016/S0022-247X(02)00530-9.![]() ![]() ![]() |
|
M. Filippakis
, L. Gasiński
and N. S. Papageorgiou
, Multiplicity results for nonlinear Neumann problems, Canad. J. Math., 58 (2006)
, 64-92.
doi: 10.4153/CJM-2006-004-6.![]() ![]() ![]() |
|
M. Grossi
, Asymptotic behaviour of the Kazdan-{W}arner solution in the annulus, J. Differential Equations, 223 (2006)
, 96-111.
doi: 10.1016/j.jde.2005.08.003.![]() ![]() ![]() |
|
M. Grossi
and B. Noris
, Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., 140 (2012)
, 2141-2154.
doi: 10.1090/S0002-9939-2011-11133-X.![]() ![]() ![]() |
|
L. Iturriaga
, S. Lorca
and E. Massa
, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010)
, 763-771.
doi: 10.1016/j.anihpc.2009.11.003.![]() ![]() ![]() |
|
G. M. Lieberman
, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988)
, 1203-1219.
doi: 10.1016/0362-546X(88)90053-3.![]() ![]() ![]() |
|
P. Lindqvist,
Notes on the p-Laplace Equation,
Univ., 2006.
![]() ![]() |
|
D. Motreanu
, V. V. Motreanu
and N. S. Papageorgiou
, Nonlinear Neumann problems near resonance, Indiana Univ. Math. J., 58 (2009)
, 1257-1279.
doi: 10.1512/iumj.2009.58.3565.![]() ![]() ![]() |
|
P. Pucci
and J. Serrin
, A general variational identity, Indiana Univ. Math. J., 35 (1986)
, 681-703.
doi: 10.1512/iumj.1986.35.35036.![]() ![]() ![]() |
|
B. Ricceri
, Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc., 33 (2001)
, 331-340.
doi: 10.1017/S0024609301008001.![]() ![]() ![]() |
|
S. Secchi
, Increasing variational solutions for a nonlinear p-Laplace equation without growth conditions, Ann. Mat. Pura Appl., 191 (2012)
, 469-485.
doi: 10.1007/s10231-011-0191-4.![]() ![]() ![]() |
|
E. Serra
and P. Tilli
, Monotonicity constraints and supercritical Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011)
, 63-74.
doi: 10.1016/j.anihpc.2010.10.003.![]() ![]() ![]() |
|
J. L. Vázquez
, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984)
, 191-202.
doi: 10.1007/BF01449041.![]() ![]() ![]() |
|
X. Wu
and K.-K. Tan
, On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations, Nonlinear Anal., 65 (2006)
, 1334-1347.
doi: 10.1016/j.na.2005.10.010.![]() ![]() ![]() |
The graph of the function