For p > 2, we consider the quasilinear equation $-\Delta_p u+|u|^{p-2}u=g(u)$ in the unit ball B of $\mathbb R^N$, with homogeneous Neumann boundary conditions. The assumptions on g are very mild and allow the nonlinearity to be possibly supercritical in the sense of Sobolev embeddings. We prove the existence of a nonconstant, positive, radially nondecreasing solution via variational methods. In the case $g(u)=|u|^{q-2}u$, we detect the asymptotic behavior of these solutions as $q\to \infty$.
Citation: |
S. Aizicovici , N. S. Papageorgiou and V. Staicu , Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4), 188 (2009) , 679-719. doi: 10.1007/s10231-009-0096-7. | |
G. Anello , Existence of infinitely many weak solutions for a Neumann problem, Nonlinear Anal., 57 (2004) , 199-209. doi: 10.1016/j.na.2004.02.009. | |
T. Bartsch , Z. Liu and T. Weth , Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc., 91 (2005) , 129-152. doi: 10.1112/S0024611504015187. | |
T. Bartsch and Z. Liu , On a superlinear elliptic p-Laplacian equation, J. Differential Equations, 198 (2004) , 149-175. doi: 10.1016/j.jde.2003.08.001. | |
G. Bognár and P. Drábek , The p-Laplacian equation with superlinear and supercritical growth, multiplicity of radial solutions, Nonlinear Anal., 60 (2005) , 719-728. doi: 10.1016/j.na.2004.09.047. | |
G. Bonanno and P. Candito , Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80 (2003) , 424-429. doi: 10.1007/s00013-003-0479-8. | |
J. F. Bonder and J. D. Rossi , Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl., 263 (2001) , 195-223. doi: 10.1006/jmaa.2001.7609. | |
D. Bonheure , B. Noris and T. Weth , Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012) , 573-588. doi: 10.1016/j.anihpc.2012.02.002. | |
D. Bonheure and E. Serra , Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth, NoDEA Nonlinear Differential Equations Appl., 18 (2011) , 217-235. doi: 10.1007/s00030-010-0092-z. | |
D. Bonheure, J. -B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system, preprint, arXiv: 1603.07374. | |
D. Bonheure , M. Grossi , B. Noris and S. Terracini , Multi-layer radial solutions for a supercritical Neumann problem, J. Differential Equations, 261 (2016) , 455-504. doi: 10.1016/j.jde.2016.03.016. | |
D. Bonheure , C. Grumiau and C. Troestler , Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions, Nonlinear Anal., 147 (2016) , 236-273. doi: 10.1016/j.na.2016.09.010. | |
D. Bonheure , E. Serra and P. Tilli , Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal., 265 (2013) , 375-398. doi: 10.1016/j.jfa.2013.05.027. | |
A. Boscaggin and W. Dambrosio , Highly oscillatory solutions of a Neumann problem for a p-Laplacian equation, Nonlinear Anal., 122 (2015) , 58-82. doi: 10.1016/j.na.2015.03.020. | |
M. Clapp and S. Tiwari , Multiple solutions to a pure supercritical problem for the p-Laplacian, Calc. Var. Partial Differential Equations, 55 (2016) , 1-23. doi: 10.1007/s00526-015-0949-4. | |
L. Damascelli , Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998) , 493-516. doi: 10.1016/S0294-1449(98)80032-2. | |
L. Damascelli , F. Pacella and M. Ramaswamy , Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Rational Mech. Anal., 148 (1999) , 291-308. doi: 10.1007/s002050050163. | |
F. Faraci , Multiplicity results for a Neumann problem involving the p-Laplacian, J. Math. Anal. Appl., 277 (2003) , 180-189. doi: 10.1016/S0022-247X(02)00530-9. | |
M. Filippakis , L. Gasiński and N. S. Papageorgiou , Multiplicity results for nonlinear Neumann problems, Canad. J. Math., 58 (2006) , 64-92. doi: 10.4153/CJM-2006-004-6. | |
M. Grossi , Asymptotic behaviour of the Kazdan-{W}arner solution in the annulus, J. Differential Equations, 223 (2006) , 96-111. doi: 10.1016/j.jde.2005.08.003. | |
M. Grossi and B. Noris , Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., 140 (2012) , 2141-2154. doi: 10.1090/S0002-9939-2011-11133-X. | |
L. Iturriaga , S. Lorca and E. Massa , Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010) , 763-771. doi: 10.1016/j.anihpc.2009.11.003. | |
G. M. Lieberman , Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988) , 1203-1219. doi: 10.1016/0362-546X(88)90053-3. | |
P. Lindqvist, Notes on the p-Laplace Equation, Univ., 2006. | |
D. Motreanu , V. V. Motreanu and N. S. Papageorgiou , Nonlinear Neumann problems near resonance, Indiana Univ. Math. J., 58 (2009) , 1257-1279. doi: 10.1512/iumj.2009.58.3565. | |
P. Pucci and J. Serrin , A general variational identity, Indiana Univ. Math. J., 35 (1986) , 681-703. doi: 10.1512/iumj.1986.35.35036. | |
B. Ricceri , Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc., 33 (2001) , 331-340. doi: 10.1017/S0024609301008001. | |
S. Secchi , Increasing variational solutions for a nonlinear p-Laplace equation without growth conditions, Ann. Mat. Pura Appl., 191 (2012) , 469-485. doi: 10.1007/s10231-011-0191-4. | |
E. Serra and P. Tilli , Monotonicity constraints and supercritical Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011) , 63-74. doi: 10.1016/j.anihpc.2010.10.003. | |
J. L. Vázquez , A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984) , 191-202. doi: 10.1007/BF01449041. | |
X. Wu and K.-K. Tan , On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations, Nonlinear Anal., 65 (2006) , 1334-1347. doi: 10.1016/j.na.2005.10.010. |
The graph of the function