June  2017, 37(6): 3059-3078. doi: 10.3934/dcds.2017131

Onofri inequalities and rigidity results

1. 

Ceremade, CNRS UMR n$^{o}$ 7534 and Université Paris-Dauphine PSL research university Place de Lattre de Tassigny, 75775 Paris Cédex 16, France

2. 

RICAM and Universität Wien Wolfgang Pauli Institute Oskar-Morgenstern-Platz 1,1090 Wien, Austria

* Corresponding author: Jean Dolbeault

Received  November 2015 Revised  January 2017 Published  February 2017

This paper is devoted to the Moser-Trudinger-Onofri inequality on smooth compact connected Riemannian manifolds. We establish a rigidity result for the Euler-Lagrange equation and deduce an estimate of the optimal constant in the inequality on two-dimensional closed Riemannian manifolds. Compared to existing results, we provide a non-local criterion which is well adapted to variational methods, introduce a nonlinear flow along which the evolution of a functional related with the inequality is monotone and get an integral remainder term which allows us to discuss optimality issues. As an important application of our method, we also consider the non-compact case of the Moser-Trudinger-Onofri inequality on the two-dimensional Euclidean space, with weights. The standard weight is the one that is computed when projecting the two-dimensional sphere using the stereographic projection, but we also give more general results which are of interest, for instance, for the Keller-Segel model in chemotaxis.

Citation: Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. Onofri inequalities and rigidity results. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3059-3078. doi: 10.3934/dcds.2017131
References:
[1]

T. Aubin, Meilleures constantes dans le théoréme d'inclusion de Sobolev et un théoréme de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32 (1979), 148-174.  doi: 10.1016/0022-1236(79)90052-1.  Google Scholar

[2]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampére Equations vol. 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4612-5734-9.  Google Scholar

[3]

D. Bakry and M. Ledoux, Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator, Duke Math. J., 85 (1996), 253-270.  doi: 10.1215/S0012-7094-96-08511-7.  Google Scholar

[4]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[5]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242.  doi: 10.2307/2946638.  Google Scholar

[6]

A. Bentaleb, Inégalité de Sobolev pour l'opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 187-190.   Google Scholar

[7]

M. Berger, P. Gauduchon and E. Mazet, Le Spectre d'une Variété Riemannienne Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971.  Google Scholar

[8]

R. J. Berman and B. Berndtsson, Moser-Trudinger type inequalities for complex Monge-Ampére operators and Aubin's "hypothése fondamentale", ArXiv e-prints. Google Scholar

[9]

M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539.  doi: 10.1007/BF01243922.  Google Scholar

[10]

P. BilerL. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, Journal of Mathematical Biology, 63 (2011), 1-32.  doi: 10.1007/s00285-010-0357-5.  Google Scholar

[11]

P. BilerG. KarchP. Laurençot and T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), 1563-1583.  doi: 10.1002/mma.743.  Google Scholar

[12]

J. Campos and J. Dolbeault, A functional framework for the Keller-Segel system: Logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris, 350 (2012), 949-954.  doi: 10.1016/j.crma.2012.10.023.  Google Scholar

[13]

J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic keller-segel model in the plane, Comm. Partial Differential Equations, 39 (2014), 806-841.  doi: 10.1080/03605302.2014.885046.  Google Scholar

[14]

E. A. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on ${\mathbb{S}^n} $, Geom. Funct. Anal., 2 (1992), 90-104.  doi: 10.1007/BF01895706.  Google Scholar

[15]

S.-Y. A. Chang, Extremal functions in a sharp form of Sobolev inequality, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, (1987), 715-723.   Google Scholar

[16]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on ${\mathbb{S}^2} $, J. Differential Geom., 27 (1988), 259-296.   Google Scholar

[17]

S. -Y. A. Chang, Non-linear Elliptic Equations in Conformal Geometry Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004. doi: 10.4171/006.  Google Scholar

[18]

S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on ${\mathbb{S}^2} $, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[19]

S. -Y. A. Chang and P. C. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math., 56 (2003), 1135-1150, Dedicated to the memory of Jürgen K. Moser. doi: 10.1002/cpa.3029.  Google Scholar

[20]

W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[21]

P. Cherrier, Une inégalité de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2), 103 (1979), 353-374.   Google Scholar

[22]

J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008), 593-611.  doi: 10.1016/j.jfa.2007.01.017.  Google Scholar

[23]

J. Dolbeault and M. J. Esteban, Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, 27 (2014), 435-465.  doi: 10.1088/0951-7715/27/3/435.  Google Scholar

[24]

J. DolbeaultM. J. Esteban and G. Jankowiak, The Moser-Trudinger-Onofri inequality, Chinese Annals of Math. B, 36 (2015), 777-802.  doi: 10.1007/s11401-015-0976-7.  Google Scholar

[25]

J. DolbeaultM. J. EstebanM. Kowalczyk and M. Loss, Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (2014), 695-724.  doi: 10.3934/dcdss.2014.7.695.  Google Scholar

[26]

J. DolbeaultM. J. Esteban and M. Loss, Nonlinear flows and rigidity results on compact manifolds, Journal of Functional Analysis, 267 (2014), 1338-1363.  doi: 10.1016/j.jfa.2014.05.021.  Google Scholar

[27]

Z. Faget, Best constants in the exceptional case of Sobolev inequalities, Math. Z., 252 (2006), 133-146.  doi: 10.1007/s00209-005-0850-5.  Google Scholar

[28]

Z. Faget, Optimal constants in the exceptional case of Sobolev inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 360 (2008), 2303-2325.  doi: 10.1090/S0002-9947-07-04308-5.  Google Scholar

[29]

É. Fontenas, Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphéres, Bull. Sci. Math., 121 (1997), 71-96.   Google Scholar

[30]

A. Ghigi, On the Moser-Onofri and Prékopa-Leindler inequalities, Collect. Math., 56 (2005), 143-156.   Google Scholar

[31]

N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications vol. 187 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/187.  Google Scholar

[32]

B. GidasW. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}^n} $, in Mathematical analysis and applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud., Academic Press, New York-London, (1981), 369-402.   Google Scholar

[33]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities vol. 5 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1999.  Google Scholar

[34]

C. W. Hong, A best constant and the Gaussian curvature, Proc. Amer. Math. Soc., 97 (1986), 737-747.  doi: 10.1090/S0002-9939-1986-0845999-7.  Google Scholar

[35]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.  doi: 10.1007/s002200050536.  Google Scholar

[36]

A. Lichnerowicz, Géométrie des Groupes de Transformations Travaux et Recherches Mathématiques, Ⅲ. Dunod, Paris, 1958.  Google Scholar

[37]

J. R. Licois and L. Véron, Un théoréme d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1337-1342.   Google Scholar

[38]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[39]

Y. NaitoT. Suzuki and K. Yoshida, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations, 184 (2002), 386-421.  doi: 10.1006/jdeq.2001.4146.  Google Scholar

[40]

M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 161-195.  doi: 10.1007/s002050050127.  Google Scholar

[41]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326.  doi: 10.1007/BF01212171.  Google Scholar

[42]

B. OsgoodR. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148-211.  doi: 10.1016/0022-1236(88)90070-5.  Google Scholar

[43]

D. H. PhongJ. SongJ. Sturm and B. Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds, American Journal of Mathematics, 130 (2008), 1067-1085.  doi: 10.1353/ajm.0.0013.  Google Scholar

[44]

Y. A. Rubinstein, On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood, J. Funct. Anal., 255 (2008), 2641-2660.  doi: 10.1016/j.jfa.2007.10.009.  Google Scholar

[45]

Y. A. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math., 218 (2008), 1526-1565.  doi: 10.1016/j.aim.2008.03.017.  Google Scholar

[46]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytical Approach Progress in Nonlinear Differential Equations and their Applications, 72, Birkhäuser Boston, Inc. , Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[47]

G. Tian and X. Zhu, A nonlinear inequality of Moser-Trudinger type, Calculus of Variations and Partial Differential Equations, 10 (2000), 349-354.  doi: 10.1007/s005260010349.  Google Scholar

[48]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.   Google Scholar

show all references

References:
[1]

T. Aubin, Meilleures constantes dans le théoréme d'inclusion de Sobolev et un théoréme de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32 (1979), 148-174.  doi: 10.1016/0022-1236(79)90052-1.  Google Scholar

[2]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampére Equations vol. 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4612-5734-9.  Google Scholar

[3]

D. Bakry and M. Ledoux, Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator, Duke Math. J., 85 (1996), 253-270.  doi: 10.1215/S0012-7094-96-08511-7.  Google Scholar

[4]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[5]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242.  doi: 10.2307/2946638.  Google Scholar

[6]

A. Bentaleb, Inégalité de Sobolev pour l'opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 187-190.   Google Scholar

[7]

M. Berger, P. Gauduchon and E. Mazet, Le Spectre d'une Variété Riemannienne Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971.  Google Scholar

[8]

R. J. Berman and B. Berndtsson, Moser-Trudinger type inequalities for complex Monge-Ampére operators and Aubin's "hypothése fondamentale", ArXiv e-prints. Google Scholar

[9]

M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539.  doi: 10.1007/BF01243922.  Google Scholar

[10]

P. BilerL. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, Journal of Mathematical Biology, 63 (2011), 1-32.  doi: 10.1007/s00285-010-0357-5.  Google Scholar

[11]

P. BilerG. KarchP. Laurençot and T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), 1563-1583.  doi: 10.1002/mma.743.  Google Scholar

[12]

J. Campos and J. Dolbeault, A functional framework for the Keller-Segel system: Logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris, 350 (2012), 949-954.  doi: 10.1016/j.crma.2012.10.023.  Google Scholar

[13]

J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic keller-segel model in the plane, Comm. Partial Differential Equations, 39 (2014), 806-841.  doi: 10.1080/03605302.2014.885046.  Google Scholar

[14]

E. A. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on ${\mathbb{S}^n} $, Geom. Funct. Anal., 2 (1992), 90-104.  doi: 10.1007/BF01895706.  Google Scholar

[15]

S.-Y. A. Chang, Extremal functions in a sharp form of Sobolev inequality, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, (1987), 715-723.   Google Scholar

[16]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on ${\mathbb{S}^2} $, J. Differential Geom., 27 (1988), 259-296.   Google Scholar

[17]

S. -Y. A. Chang, Non-linear Elliptic Equations in Conformal Geometry Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004. doi: 10.4171/006.  Google Scholar

[18]

S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on ${\mathbb{S}^2} $, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[19]

S. -Y. A. Chang and P. C. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math., 56 (2003), 1135-1150, Dedicated to the memory of Jürgen K. Moser. doi: 10.1002/cpa.3029.  Google Scholar

[20]

W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[21]

P. Cherrier, Une inégalité de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2), 103 (1979), 353-374.   Google Scholar

[22]

J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008), 593-611.  doi: 10.1016/j.jfa.2007.01.017.  Google Scholar

[23]

J. Dolbeault and M. J. Esteban, Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, 27 (2014), 435-465.  doi: 10.1088/0951-7715/27/3/435.  Google Scholar

[24]

J. DolbeaultM. J. Esteban and G. Jankowiak, The Moser-Trudinger-Onofri inequality, Chinese Annals of Math. B, 36 (2015), 777-802.  doi: 10.1007/s11401-015-0976-7.  Google Scholar

[25]

J. DolbeaultM. J. EstebanM. Kowalczyk and M. Loss, Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (2014), 695-724.  doi: 10.3934/dcdss.2014.7.695.  Google Scholar

[26]

J. DolbeaultM. J. Esteban and M. Loss, Nonlinear flows and rigidity results on compact manifolds, Journal of Functional Analysis, 267 (2014), 1338-1363.  doi: 10.1016/j.jfa.2014.05.021.  Google Scholar

[27]

Z. Faget, Best constants in the exceptional case of Sobolev inequalities, Math. Z., 252 (2006), 133-146.  doi: 10.1007/s00209-005-0850-5.  Google Scholar

[28]

Z. Faget, Optimal constants in the exceptional case of Sobolev inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 360 (2008), 2303-2325.  doi: 10.1090/S0002-9947-07-04308-5.  Google Scholar

[29]

É. Fontenas, Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphéres, Bull. Sci. Math., 121 (1997), 71-96.   Google Scholar

[30]

A. Ghigi, On the Moser-Onofri and Prékopa-Leindler inequalities, Collect. Math., 56 (2005), 143-156.   Google Scholar

[31]

N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications vol. 187 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/187.  Google Scholar

[32]

B. GidasW. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}^n} $, in Mathematical analysis and applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud., Academic Press, New York-London, (1981), 369-402.   Google Scholar

[33]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities vol. 5 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1999.  Google Scholar

[34]

C. W. Hong, A best constant and the Gaussian curvature, Proc. Amer. Math. Soc., 97 (1986), 737-747.  doi: 10.1090/S0002-9939-1986-0845999-7.  Google Scholar

[35]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.  doi: 10.1007/s002200050536.  Google Scholar

[36]

A. Lichnerowicz, Géométrie des Groupes de Transformations Travaux et Recherches Mathématiques, Ⅲ. Dunod, Paris, 1958.  Google Scholar

[37]

J. R. Licois and L. Véron, Un théoréme d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1337-1342.   Google Scholar

[38]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[39]

Y. NaitoT. Suzuki and K. Yoshida, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations, 184 (2002), 386-421.  doi: 10.1006/jdeq.2001.4146.  Google Scholar

[40]

M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 161-195.  doi: 10.1007/s002050050127.  Google Scholar

[41]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326.  doi: 10.1007/BF01212171.  Google Scholar

[42]

B. OsgoodR. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148-211.  doi: 10.1016/0022-1236(88)90070-5.  Google Scholar

[43]

D. H. PhongJ. SongJ. Sturm and B. Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds, American Journal of Mathematics, 130 (2008), 1067-1085.  doi: 10.1353/ajm.0.0013.  Google Scholar

[44]

Y. A. Rubinstein, On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood, J. Funct. Anal., 255 (2008), 2641-2660.  doi: 10.1016/j.jfa.2007.10.009.  Google Scholar

[45]

Y. A. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math., 218 (2008), 1526-1565.  doi: 10.1016/j.aim.2008.03.017.  Google Scholar

[46]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytical Approach Progress in Nonlinear Differential Equations and their Applications, 72, Birkhäuser Boston, Inc. , Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[47]

G. Tian and X. Zhu, A nonlinear inequality of Moser-Trudinger type, Calculus of Variations and Partial Differential Equations, 10 (2000), 349-354.  doi: 10.1007/s005260010349.  Google Scholar

[48]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.   Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[3]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[4]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[10]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[11]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[12]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[13]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[20]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (58)
  • Cited by (1)

[Back to Top]