We rigorously establish that, in the long-wave regime characterized by the assumptions of long wavelength and small amplitude, bidirectional solutions of the improved Boussinesq equation tend to associated solutions of two uncoupled Camassa-Holm equations. We give a precise estimate for approximation errors in terms of two small positive parameters measuring the effects of nonlinearity and dispersion. Our results demonstrate that, in the present regime, any solution of the improved Boussinesq equation is split into two waves propagating in opposite directions independently, each of which is governed by the Camassa-Holm equation. We observe that the approximation error for the decoupled problem considered in the present study is greater than the approximation error for the unidirectional problem characterized by a single Camassa-Holm equation. We also consider lower order approximations and we state similar error estimates for both the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.
Citation: |
A. A. Alazman
, J. P. Albert
, J. L. Bona
, M. Chen
and J. Wu
, Comparisons between the BBM equation and a Boussinesq system, Advances in Differential Equations, 11 (2006)
, 121-166.
![]() ![]() |
|
T. B. Benjamin
, J. L. Bona
and J. J. Mahony
, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci., 272 (1972)
, 47-78.
doi: 10.1098/rsta.1972.0032.![]() ![]() |
|
J. L. Bona
, T. Colin
and D. Lannes
, Long wave approximations for water waves, Arch. Rational Mech. Anal., 178 (2005)
, 373-410.
doi: 10.1007/s00205-005-0378-1.![]() ![]() ![]() |
|
R. Camassa
and D. D. Holm
, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993)
, 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.![]() ![]() ![]() |
|
A. Constantin
and D. Lannes
, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009)
, 165-186.
doi: 10.1007/s00205-008-0128-2.![]() ![]() ![]() |
|
A. Constantin
and L. Molinet
, The initial value problem for a generalized Boussinesq equation, Differential and Integral Equations, 15 (2002)
, 1061-1072.
![]() ![]() |
|
W. Craig
, An existence theory for water waves and the Boussinesq and Kortewegde Vries scaling limits, Commun. Part. Diff. Eqns., 10 (1985)
, 787-1003.
doi: 10.1080/03605308508820396.![]() ![]() ![]() |
|
V. Duchene
, Decoupled and unidirectional asymptotic models for the propagation of internal waves, M3AS: Math. Models Methods Appl. Sci., 24 (2014)
, 1-65.
doi: 10.1142/S0218202513500462.![]() ![]() ![]() |
|
N. Duruk
, A. Erkip
and H. A. Erbay
, A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity, IMA J. Appl. Math., 74 (2009)
, 97-106.
doi: 10.1093/imamat/hxn020.![]() ![]() ![]() |
|
N. Duruk
, H. A. Erbay
and A. Erkip
, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity, Nonlinearity, 23 (2010)
, 107-118.
doi: 10.1088/0951-7715/23/1/006.![]() ![]() ![]() |
|
H. A. Erbay
, S. Erbay
and A. Erkip
, Derivation of the Camassa-Holm equations for elastic waves, Phys. Lett. A, 379 (2015)
, 956-961.
doi: 10.1016/j.physleta.2015.01.031.![]() ![]() ![]() |
|
H. A. Erbay
, S. Erbay
and A. Erkip
, The Camassa-Holm equation as the long-wave limit of the improved Bousssinesq equation and of a class of nonlocal wave equations, Discrete Contin. Dyn. Syst., 36 (2016)
, 6101-6116.
doi: 10.3934/dcds.2016066.![]() ![]() ![]() |
|
T. Gallay
and G. Schneider
, KP description of unidirectional long waves. The model case, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001)
, 885-898.
doi: 10.1017/S0308210500001165.![]() ![]() ![]() |
|
D. J. Korteweg
and G. de Vries
, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Phil. Mag., 39 (1895)
, 422-443.
doi: 10.1080/14786449508620739.![]() ![]() ![]() |
|
D. Lannes,
The Water Waves Problem: Mathematical Analysis and Asymptotics AMS Mathematical Surveys and Monographs, vol. 188, American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/surv/188.![]() ![]() ![]() |
|
L. A. Ostrovskii
and A. M. Sutin
, Nonlinear elastic waves in rods, PMM J. Appl. Math. Mech., 41 (1977)
, 543-549.
![]() |
|
G. Schneider
and C. E. Wayne
, The long-wave limit for the water wave problem. I. The case of zero surface tension, Comm. Pure Appl. Math., 53 (2000)
, 1475-1535.
doi: 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V.![]() ![]() |
|
G. Schneider
, The long wave limit for a Boussinesq equation, SIAM J. Appl. Math., 58 (1998)
, 1237-1245.
doi: 10.1137/S0036139995287946.![]() ![]() ![]() |
|
M. P. Soerensen
, P. L. Christiansen
and P. S. Lomdahl
, Solitary.waves on nonlinear elastic rods. I, J. Acoust. Soc. Am., 76 (1984)
, 871-879.
doi: 10.1121/1.391312.![]() ![]() ![]() |
|
C. E. Wayne
and J. D. Wright
, Higher order modulation equations for a Boussinesq equation, SIAM J. Appl. Dyn. Sys., 1 (2002)
, 271-302.
doi: 10.1137/S1111111102411298.![]() ![]() ![]() |
|
J. D. Wright
, Corrections to the KdV Approximation for Water Waves, SIAM J. Math. Anal., 37 (2005)
, 1161-1206.
doi: 10.1137/S0036141004444202.![]() ![]() ![]() |