We study the escaping set of functions in the class $\mathcal{B}^*$, that is, transcendental self-maps of $\mathbb{C}^*$ for which the set of singular values is contained in a compact annulus of $\mathbb{C}^*$ that separates zero from infinity. For functions in the class $\mathcal{B}^*$, escaping points lie in their Julia set. If $f$ is a composition of finite order transcendental self-maps of $\mathbb{C}^*$ (and hence, in the class $\mathcal{B}^*$), then we show that every escaping point of $f$ can be connected to one of the essential singularities by a curve of points that escape uniformly. Moreover, for every sequence $e∈\{0,∞\}^{\mathbb{N}_0}$, we show that the escaping set of $f$ contains a Cantor bouquet of curves that accumulate to the set $\{0,∞\}$ according to $e$ under iteration by $f$.
Citation: |
Figure 1. Period 8 cycle of rays landing on a repelling period 4 orbit in the unit circle for the function $f_{\alpha\beta}(z)=ze^{i\alpha}e^{\beta(z-1/z)/2}$ from the Arnol'd standard family, with $\alpha=0.19725$ and $\beta=0.48348$. Such points lie in the set $I_e(f_{\alpha\beta})$ with $e=\overline{\infty 0 \infty\infty 0 \infty 0 0}$ (see (2)).
J. M. Aarts and L. G. Oversteegen , The geometry of Julia sets, Trans. Amer. Math. Soc., 338 (1993) , 897-918. doi: 10.1090/S0002-9947-1993-1182980-3. | |
K. Barański , Trees and hairs for some hyperbolic entire maps of finite order, Math. Z., 257 (2007) , 33-59. doi: 10.1007/s00209-007-0114-7. | |
K. Barański , X. Jarque and L. Rempe , Brushing the hairs of transcendental entire functions, Topology Appl., 159 (2012) , 2102-2114. doi: 10.1016/j.topol.2012.02.004. | |
A. M. Benini and N. Fagella , A separation theorem for entire transcendental maps, Proc. Lond. Math. Soc. (3), 110 (2015) , 291-324. doi: 10.1112/plms/pdu047. | |
W. Bergweiler , Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.), 29 (1993) , 151-188. doi: 10.1090/S0273-0979-1993-00432-4. | |
W. Bergweiler , On the Julia set of analytic self-maps of the punctured plane, Analysis, 15 (1995) , 251-256. doi: 10.1524/anly.1995.15.3.251. | |
W. Bergweiler and A. E. Eremenko , On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11 (1995) , 355-373. doi: 10.4171/RMI/176. | |
W. Bergweiler and A. Hinkkanen , On semiconjugation of entire functions, Math. Proc. Cambridge Philos. Soc., 126 (1999) , 565-574. doi: 10.1017/S0305004198003387. | |
W. Bergweiler , P. J. Rippon and G. M. Stallard , Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3), 97 (2008) , 368-400. doi: 10.1112/plms/pdn007. | |
C. J. Bishop , Constructing entire functions by quasiconformal folding, Acta Math., 214 (2015) , 1-60. doi: 10.1007/s11511-015-0122-0. | |
J. Clunie and T. Kövari , On integral functions having prescribed asymptotic growth. Ⅱ, Canad. J. Math., 20 (1968) , 7-20. doi: 10.4153/CJM-1968-002-1. | |
A. Deniz , A landing theorem for periodic dynamic rays for transcendental entire maps with bounded post-singular set, J. Difference Equ. Appl., 20 (2014) , 1627-1640. doi: 10.1080/10236198.2014.968564. | |
R. L. Devaney and M. Krych , Dynamics of exp(z), Ergodic Theory Dynam. Systems, 4 (1984) , 35-52. doi: 10.1017/S014338570000225X. | |
R. L. Devaney and F. Tangerman , Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems, 6 (1986) , 489-503. doi: 10.1017/S0143385700003655. | |
A. Douady and J. H. Hubbard, Étude Dynamique Des Polynômes Complexes. Partie Ⅰ/Ⅱ Publications Mathématiques d'Orsay, 84/85 Université de Paris-Sud, Département de Mathématiques, Orsay, 1984/1985. | |
A. E. Eremenko , On the iteration of entire functions Dynamical systems and ergodic theory (Warsaw, 1986), Banach Center Publ., PWN, Warsaw, 23 (1989) , 339-345. | |
A. E. Eremenko and M. Yu. Lyubich , Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), 42 (1992) , 989-1020. doi: 10.5802/aif.1318. | |
N. Fagella , Dynamics of the complex standard family, J. Math. Anal. Appl., 229 (1999) , 1-31. doi: 10.1006/jmaa.1998.6134. | |
P. Fatou , Sur l'itération des fonctions transcendantes entiéres, Acta Math., 47 (1926) , 337-370. doi: 10.1007/BF02559517. | |
O. Forster, Lectures on Riemann Surfaces Translated from the German by Bruce Gilligan. Graduate Texts in Mathematics, 81 Springer-Verlag, New York-Berlin, 1981. | |
W. K. Hayman, Meromorphic Functions Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. | |
M. Heins , Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2), 49 (1948) , 200-213. doi: 10.2307/1969122. | |
F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes Ph. D. thesis, Helsingin Yliopisto, 1914. | |
L. Keen, Dynamics of holomorphic self-maps of C*, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), 9-30, Math. Sci. Res. Inst. Publ. 10, Springer, New York, 1988. doi: 10.1007/978-1-4613-9602-4_2. | |
L. Keen , Topology and growth of a special class of holomorphic self-maps of $\textbf{C}^* $, Ergodic Theory Dynam. Systems, 9 (1989) , 321-328. doi: 10.1017/S0143385700004995. | |
J. Kotus, Iterated holomorphic maps on the punctured plane, Dynamical systems (Sopron, 1985), 10-28, Lecture Notes in Econom. and Math. Systems 287, Springer, Berlin, 1987. doi: 10.1007/978-3-662-00748-8_2. | |
J. K. Langley , On the multiple points of certain meromorphic functions, Proc. Amer. Math. Soc., 123 (1995) , 1787-1795. doi: 10.1090/S0002-9939-1995-1242092-4. | |
P. M. Makienko, Iterations of analytic functions in C* Dokl. Akad. Nauk SSSR, 297 (1987), 35-37; translation in Soviet Math. Dokl. , 36 (1988), 418-420. | |
D. Martí-Pete, Structural Theorems for Holomorphic Self-maps of the Punctured Plane Ph. D. thesis, The Open University, 2016. | |
D. Martí-Pete, The escaping set of transcendental self-maps of the punctured plane, to appear in Ergodic Theory Dynam. Systems arXiv: 1412.1032. | |
D. Martí-Pete, Escaping Fatou components of transcendental self-maps of the punctured plane, in preparation. | |
H. Mihaljević-Brandt and L. Rempe-Gillen , Absence of wandering domains for some real entire functions with bounded singular sets, Math. Ann., 357 (2013) , 1577-1604. doi: 10.1007/s00208-013-0936-z. | |
J. W. Milnor, Dynamics in One Complex Variable 3rd edition, Annals of Mathematics Studies, 160 Princeton University Press, Princeton, NJ, 2006. doi: 10.1007/978-3-663-08092-3. | |
S. B. Nadler, Jr. , Continuum Theory. An introduction Monographs and Textbooks in Pure and Applied Mathematics, 158 Marcel Dekker Inc. , New York, 1992. | |
G. Pólya , On an integral function of an integral function, J. London Math. Soc., S1-1 (1925) , 12-15. doi: 10.1112/jlms/s1-1.1.12. | |
H. Rådström , On the iteration of analytic functions, Math. Scand., 1 (1953) , 85-92. doi: 10.7146/math.scand.a-10367. | |
L. Rempe , A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006) , 2639-2648 (electronic). doi: 10.1090/S0002-9939-06-08287-6. | |
L. Rempe , On a question of Eremenko concerning escaping components of entire functions, Bull. Lond. Math. Soc., 39 (2007) , 661-666. doi: 10.1112/blms/bdm053. | |
L. Rempe , Siegel disks and periodic rays of entire functions, J. Reine Angew. Math., 624 (2008) , 81-102. doi: 10.1515/CRELLE.2008.081. | |
L. Rempe , P. J. Rippon and G. M. Stallard , Are Devaney hairs fast escaping?, J. Difference Equ. Appl., 16 (2010) , 739-762. doi: 10.1080/10236190903282824. | |
L. Rempe-Gillen and D. J. Sixsmith, Hyperbolic entire functions and the Eremenko-Lyubich class: Class $\mathcal{B} $ or not class $\mathcal{B}$?, to appear in Math. Z., (2016), 1-18, arXiv: 1502.00492. | |
P. J. Rippon and G. M. Stallard , Dimensions of Julia sets of meromorphic functions, J. London Math. Soc. (2), 71 (2005) , 669-683. doi: 10.1112/S0024610705006393. | |
P. J. Rippon and G. M. Stallard , On questions of Fatou and Eremenko, Proc. Amer. Math. Soc., 133 (2005) , 1119-1126 (electronic). doi: 10.1090/S0002-9939-04-07805-0. | |
G. Rottenfusser , J. Rückert , L. Rempe and D. Schleicher , Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011) , 77-125. doi: 10.4007/annals.2011.173.1.3. | |
D. Schleicher and J. Zimmer , Escaping points of exponential maps, J. London Math. Soc. (2), 67 (2003) , 380-400. doi: 10.1112/S0024610702003897. | |
D. Schleicher and J. Zimmer , Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003) , 327-354. | |
D. J. Sixsmith , A new characterisation of the Eremenko-Lyubich class, J. Anal. Math., 123 (2014) , 95-105. doi: 10.1007/s11854-014-0014-9. | |
D. Sullivan , Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2), 122 (1985) , 401-418. doi: 10.2307/1971308. | |
G. Valiron, Lectures on the General Theory of Integral Functions Chelsea Publishing Company, New York, 1949. |
Period 8 cycle of rays landing on a repelling period 4 orbit in the unit circle for the function
Logarithmic coordinates for a function
Phase space of the function
Logarithmic tracts of functions of finite order with
Fundamental domains of a function
In the left, we have the phase space of the function