\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamic rays of bounded-type transcendental self-maps of the punctured plane

  • * Corresponding author

    * Corresponding author

The first author was partially supported by the Polish NCN grant decision DEC-2012/06/M/ST1/00168 and by the Spanish grants MTM2011-26995-C02-02 and MTM2014-52209-C2-2-P. The second author was supported by The Open University, by a Formula Santander Scholarship and by the Spanish grant MTM2011-26995-C02-02

Abstract / Introduction Full Text(HTML) Figure(6) Related Papers Cited by
  • We study the escaping set of functions in the class $\mathcal{B}^*$, that is, transcendental self-maps of $\mathbb{C}^*$ for which the set of singular values is contained in a compact annulus of $\mathbb{C}^*$ that separates zero from infinity. For functions in the class $\mathcal{B}^*$, escaping points lie in their Julia set. If $f$ is a composition of finite order transcendental self-maps of $\mathbb{C}^*$ (and hence, in the class $\mathcal{B}^*$), then we show that every escaping point of $f$ can be connected to one of the essential singularities by a curve of points that escape uniformly. Moreover, for every sequence $e∈\{0,∞\}^{\mathbb{N}_0}$, we show that the escaping set of $f$ contains a Cantor bouquet of curves that accumulate to the set $\{0,∞\}$ according to $e$ under iteration by $f$.

    Mathematics Subject Classification: Primary: 37F20; Secondary: 30D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Period 8 cycle of rays landing on a repelling period 4 orbit in the unit circle for the function $f_{\alpha\beta}(z)=ze^{i\alpha}e^{\beta(z-1/z)/2}$ from the Arnol'd standard family, with $\alpha=0.19725$ and $\beta=0.48348$. Such points lie in the set $I_e(f_{\alpha\beta})$ with $e=\overline{\infty 0 \infty\infty 0 \infty 0 0}$ (see (2)).

    Figure 2.  Logarithmic coordinates for a function $f\in\mathcal{B}^*$.

    Figure 3.  Phase space of the function $f(z)=\exp(0.3(z+1/z))$ which has a disjoint-type logarithmic transform (see Example 3.12). In orange, the basin of attraction of the fixed point $z_0\simeq 2.2373$. Left, $z\in [-16,16]+i[-16,16]$; right, $z\in [-0.3,0.3]+i[-0.3,0.3]$.

    Figure 4.  Logarithmic tracts of functions of finite order with $\rho_\infty(f)=3$ and $\rho_0(f)=2$ (left) and infinite order (right). The color of every point $z\in\mathbb{C}^*$ has been chosen according to the modulus (luminosity) and argument (hue) of $f(z)$.

    Figure 5.  Fundamental domains of a function $f$ in the class $\mathcal{B}^*$.

    Figure 6.  In the left, we have the phase space of the function $f(z)=z\exp(z^2+\exp(-1/z^2))$ from Example 7.3. In the right, the graph of the restriction of this function to the positive real line

  •   J. M. Aarts  and  L. G. Oversteegen , The geometry of Julia sets, Trans. Amer. Math. Soc., 338 (1993) , 897-918.  doi: 10.1090/S0002-9947-1993-1182980-3.
      K. Barański , Trees and hairs for some hyperbolic entire maps of finite order, Math. Z., 257 (2007) , 33-59.  doi: 10.1007/s00209-007-0114-7.
      K. Barański , X. Jarque  and  L. Rempe , Brushing the hairs of transcendental entire functions, Topology Appl., 159 (2012) , 2102-2114.  doi: 10.1016/j.topol.2012.02.004.
      A. M. Benini  and  N. Fagella , A separation theorem for entire transcendental maps, Proc. Lond. Math. Soc. (3), 110 (2015) , 291-324.  doi: 10.1112/plms/pdu047.
      W. Bergweiler , Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.), 29 (1993) , 151-188.  doi: 10.1090/S0273-0979-1993-00432-4.
      W. Bergweiler , On the Julia set of analytic self-maps of the punctured plane, Analysis, 15 (1995) , 251-256.  doi: 10.1524/anly.1995.15.3.251.
      W. Bergweiler  and  A. E. Eremenko , On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11 (1995) , 355-373.  doi: 10.4171/RMI/176.
      W. Bergweiler  and  A. Hinkkanen , On semiconjugation of entire functions, Math. Proc. Cambridge Philos. Soc., 126 (1999) , 565-574.  doi: 10.1017/S0305004198003387.
      W. Bergweiler , P. J. Rippon  and  G. M. Stallard , Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3), 97 (2008) , 368-400.  doi: 10.1112/plms/pdn007.
      C. J. Bishop , Constructing entire functions by quasiconformal folding, Acta Math., 214 (2015) , 1-60.  doi: 10.1007/s11511-015-0122-0.
      J. Clunie  and  T. Kövari , On integral functions having prescribed asymptotic growth. Ⅱ, Canad. J. Math., 20 (1968) , 7-20.  doi: 10.4153/CJM-1968-002-1.
      A. Deniz , A landing theorem for periodic dynamic rays for transcendental entire maps with bounded post-singular set, J. Difference Equ. Appl., 20 (2014) , 1627-1640.  doi: 10.1080/10236198.2014.968564.
      R. L. Devaney  and  M. Krych , Dynamics of exp(z), Ergodic Theory Dynam. Systems, 4 (1984) , 35-52.  doi: 10.1017/S014338570000225X.
      R. L. Devaney  and  F. Tangerman , Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems, 6 (1986) , 489-503.  doi: 10.1017/S0143385700003655.
      A. Douady and J. H. Hubbard, Étude Dynamique Des Polynômes Complexes. Partie / Publications Mathématiques d'Orsay, 84/85 Université de Paris-Sud, Département de Mathématiques, Orsay, 1984/1985.
      A. E. Eremenko , On the iteration of entire functions Dynamical systems and ergodic theory (Warsaw, 1986), Banach Center Publ., PWN, Warsaw, 23 (1989) , 339-345. 
      A. E. Eremenko  and  M. Yu. Lyubich , Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), 42 (1992) , 989-1020.  doi: 10.5802/aif.1318.
      N. Fagella , Dynamics of the complex standard family, J. Math. Anal. Appl., 229 (1999) , 1-31.  doi: 10.1006/jmaa.1998.6134.
      P. Fatou , Sur l'itération des fonctions transcendantes entiéres, Acta Math., 47 (1926) , 337-370.  doi: 10.1007/BF02559517.
      O. Forster, Lectures on Riemann Surfaces Translated from the German by Bruce Gilligan. Graduate Texts in Mathematics, 81 Springer-Verlag, New York-Berlin, 1981.
      W. K. Hayman, Meromorphic Functions Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
      M. Heins , Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2), 49 (1948) , 200-213.  doi: 10.2307/1969122.
      F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes Ph. D. thesis, Helsingin Yliopisto, 1914.
      L. Keen, Dynamics of holomorphic self-maps of C*, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), 9-30, Math. Sci. Res. Inst. Publ. 10, Springer, New York, 1988. doi: 10.1007/978-1-4613-9602-4_2.
      L. Keen , Topology and growth of a special class of holomorphic self-maps of $\textbf{C}^* $, Ergodic Theory Dynam. Systems, 9 (1989) , 321-328.  doi: 10.1017/S0143385700004995.
      J. Kotus, Iterated holomorphic maps on the punctured plane, Dynamical systems (Sopron, 1985), 10-28, Lecture Notes in Econom. and Math. Systems 287, Springer, Berlin, 1987. doi: 10.1007/978-3-662-00748-8_2.
      J. K. Langley , On the multiple points of certain meromorphic functions, Proc. Amer. Math. Soc., 123 (1995) , 1787-1795.  doi: 10.1090/S0002-9939-1995-1242092-4.
      P. M. Makienko, Iterations of analytic functions in C* Dokl. Akad. Nauk SSSR, 297 (1987), 35-37; translation in Soviet Math. Dokl. , 36 (1988), 418-420.
      D. Martí-Pete, Structural Theorems for Holomorphic Self-maps of the Punctured Plane Ph. D. thesis, The Open University, 2016.
      D. Martí-Pete, The escaping set of transcendental self-maps of the punctured plane, to appear in Ergodic Theory Dynam. Systems arXiv: 1412.1032.
      D. Martí-Pete, Escaping Fatou components of transcendental self-maps of the punctured plane, in preparation.
      H. Mihaljević-Brandt  and  L. Rempe-Gillen , Absence of wandering domains for some real entire functions with bounded singular sets, Math. Ann., 357 (2013) , 1577-1604.  doi: 10.1007/s00208-013-0936-z.
      J. W. Milnor, Dynamics in One Complex Variable 3rd edition, Annals of Mathematics Studies, 160 Princeton University Press, Princeton, NJ, 2006. doi: 10.1007/978-3-663-08092-3.
      S. B. Nadler, Jr. , Continuum Theory. An introduction Monographs and Textbooks in Pure and Applied Mathematics, 158 Marcel Dekker Inc. , New York, 1992.
      G. Pólya , On an integral function of an integral function, J. London Math. Soc., S1-1 (1925) , 12-15.  doi: 10.1112/jlms/s1-1.1.12.
      H. Rådström , On the iteration of analytic functions, Math. Scand., 1 (1953) , 85-92.  doi: 10.7146/math.scand.a-10367.
      L. Rempe , A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006) , 2639-2648 (electronic).  doi: 10.1090/S0002-9939-06-08287-6.
      L. Rempe , On a question of Eremenko concerning escaping components of entire functions, Bull. Lond. Math. Soc., 39 (2007) , 661-666.  doi: 10.1112/blms/bdm053.
      L. Rempe , Siegel disks and periodic rays of entire functions, J. Reine Angew. Math., 624 (2008) , 81-102.  doi: 10.1515/CRELLE.2008.081.
      L. Rempe , P. J. Rippon  and  G. M. Stallard , Are Devaney hairs fast escaping?, J. Difference Equ. Appl., 16 (2010) , 739-762.  doi: 10.1080/10236190903282824.
      L. Rempe-Gillen and D. J. Sixsmith, Hyperbolic entire functions and the Eremenko-Lyubich class: Class $\mathcal{B} $ or not class $\mathcal{B}$?, to appear in Math. Z., (2016), 1-18, arXiv: 1502.00492.
      P. J. Rippon  and  G. M. Stallard , Dimensions of Julia sets of meromorphic functions, J. London Math. Soc. (2), 71 (2005) , 669-683.  doi: 10.1112/S0024610705006393.
      P. J. Rippon  and  G. M. Stallard , On questions of Fatou and Eremenko, Proc. Amer. Math. Soc., 133 (2005) , 1119-1126 (electronic).  doi: 10.1090/S0002-9939-04-07805-0.
      G. Rottenfusser , J. Rückert , L. Rempe  and  D. Schleicher , Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011) , 77-125.  doi: 10.4007/annals.2011.173.1.3.
      D. Schleicher  and  J. Zimmer , Escaping points of exponential maps, J. London Math. Soc. (2), 67 (2003) , 380-400.  doi: 10.1112/S0024610702003897.
      D. Schleicher  and  J. Zimmer , Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003) , 327-354. 
      D. J. Sixsmith , A new characterisation of the Eremenko-Lyubich class, J. Anal. Math., 123 (2014) , 95-105.  doi: 10.1007/s11854-014-0014-9.
      D. Sullivan , Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2), 122 (1985) , 401-418.  doi: 10.2307/1971308.
      G. Valiron, Lectures on the General Theory of Integral Functions Chelsea Publishing Company, New York, 1949.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(1815) PDF downloads(145) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return