June  2017, 37(6): 3183-3210. doi: 10.3934/dcds.2017136

Existence of the solution for the viscous bipolar quantum hydrodynamic model

1. 

Institute of Applied Physics and Computational Mathematics, China Academy of Engineering Physics, Beijing 100088, China

2. 

Graduate School of China Academy of Engineering Physics, Beijing 100088, China

* Corresponding author: Guangwu Wang

Received  August 2015 Revised  January 2017 Published  February 2017

Fund Project: The first author is supported by National Natural Science Foundation of China-NSAF No.11271052

In this paper, we investigate the existence of classical solution of the viscous bipolar quantum hydrodynamic(QHD) models for ir-rotational fluid in a periodic domain. By applying the iteration method, we prove that the viscous bipolar QHD model has a local classical solution. Then we prove this solution is global with small initial data, based on a series of a priori estimates. Finally, we obtained the inviscid limit of this viscous quantum hydrodynamic model.

Citation: Boling Guo, Guangwu Wang. Existence of the solution for the viscous bipolar quantum hydrodynamic model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3183-3210. doi: 10.3934/dcds.2017136
References:
[1]

M. G. Ancona and G. I. Iafrate, Quantum correction to the equation of state of an electron gas in a semiconductor, Phys. Revi. B, 39 (1989), 9536-9540. doi: 10.1103/PhysRevB.39.9536. Google Scholar

[2]

M. G. Ancona and H. F. Tiersten, Microscopic physics of the sillicon inversion layer, Phys. Revi. B, 35 (1987), 7959-7965. Google Scholar

[3]

P. Antonelli and P. Marcati, On the finite enegy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., 287 (2009), 657-686. doi: 10.1007/s00220-008-0632-0. Google Scholar

[4]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rat. Mech. Anal., 203 (2012), 499-527. doi: 10.1007/s00205-011-0454-7. Google Scholar

[5]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" valuables: Ⅰ; Ⅱ, Phys. Revi., 85 (1952), 166-179. doi: 10.1103/PhysRev.85.166. Google Scholar

[6]

L. Chen and M. Drether, The viscous model of quantum hydrodynamic in several dimensions, Math. Mod. Meth. in Appl. Sci, 17 (2007), 1065-1093. doi: 10.1142/S0218202507002200. Google Scholar

[7]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy priciple, J. Statist. Phys., 112 (2003), 587-628. doi: 10.1023/A:1023824008525. Google Scholar

[8]

I. Gamba and A. Jüngel, Positive solutions to singular second and third order differential equations for quantum fluids, Arch. Rational Mech. Anal., 156 (2001), 183-203. doi: 10.1007/s002050000114. Google Scholar

[9]

C. Gardner, The quantum hydrodynamic model for semiconductors devices, SIAM J. Appl. Math., 54 (1990), 409-427. doi: 10.1137/S0036139992240425. Google Scholar

[10]

M. P. GualdniA. Jüngel and G. Toscani, Exponential decay in time of solutions of the viscous quantum hydrodynamic equations, Appl. Math. Lett, 16 (2003), 1273-1278. doi: 10.1016/S0893-9659(03)90128-5. Google Scholar

[11]

M. P. Gualdini and A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors, Euro. Jnl. of Applied Mathematics, 15 (2004), 577-595. doi: 10.1017/S0956792504005686. Google Scholar

[12]

F. Haas, A magnetohydrodynamic model for quantum plasmas Physics of Plamas 12 (2005), 062117. doi: 10.1063/1.1939947. Google Scholar

[13]

C. C. HaoY. L. Jia and H. L. Li, Quantum Euler-Poisson system: Local existence, J. Partial Diff. Eqns., 16 (2003), 306-320. Google Scholar

[14]

L. Hsiao and H. L. Li, The well-posedness and asymptotics of multi-dimensional quantum hydrodynamics, Acta Math. Sci., 29 (2009), 552-568. doi: 10.1016/S0252-9602(09)60053-9. Google Scholar

[15]

F. HuangH. L. Li and A. Matsumura, Existence and stability of steady-state of one-dimensional quantum Euler-Poisson system for seimiconductors, J. Diff. Eqns., 225 (2006), 1-25. doi: 10.1016/j.jde.2006.02.002. Google Scholar

[16]

F. Huang, H. L. Li, A. Matsumura and S. Odanaka, Well-posedness and stability of multi-dimensional quantum hydrodynamics for semiconductors in R3, Series in Contemporary Applied Mathematics CAM 15 High Education Press, Beijing, 2010.Google Scholar

[17]

Y. L. Jia and H. L. Li, Large time behavior of solutions of quantum hydrodynamical model for semiconductors, Acat. Math. Sci., 26 (2006), 163-178. doi: 10.1016/S0252-9602(06)60038-6. Google Scholar

[18]

A. Jüngel, A steady-state potential flow Euler-Poisson system for charged quantum fluids, Comm. Math., 194 (1998), 463-479. Google Scholar

[19]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for qunatum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045. doi: 10.1137/090776068. Google Scholar

[20]

A. Jüngel and H. L. Li, Quantum Euler-Poisson systems: Existence and of stationary state, Arch. Math.(Brno), 40 (2004), 435-456. Google Scholar

[21]

A. Jüngel and H. L. Li, Quantum Euler-Poisson systems: Global existence and exponential decay, Quart. Appl. Math., 62 (2004), 569-600. doi: 10.1090/qam/2086047. Google Scholar

[22]

A. JüngelH. L. Li and A. Matsumura, The relaxation-time limit in the quantum hydrodynamic equations for semiconductors, J. Diff. Eqns., 225 (2006), 440-464. doi: 10.1016/j.jde.2005.11.007. Google Scholar

[23]

A. JüngelM. C. Mariani and D. Rial, Local exitence of solutins to the transient quantum hydrodynamic equations, Math. Mod. Meth. Appl. Sci., 12 (2002), 485-495. doi: 10.1142/S0218202502001751. Google Scholar

[24]

A. Jüngel and S. Q. Tang, Numerical approximation of the viscous quantum hydrodynamic model for semiconductors, Applied Numerical Mathematics, 56 (2006), 899-915. doi: 10.1016/j.apnum.2005.07.003. Google Scholar

[25]

H. L. Li and C. K. Lin, Zero-Debye length asymptotic of the quantum hydrodynamic model for semiconductors, Commun. Math. Phys., 256 (2005), 195-212. doi: 10.1007/s00220-005-1316-7. Google Scholar

[26]

H. L. Li and P. Marcati, Exitence and asymptotic behavior of multi-dimensional quantum hydrodynami cmodel for semiconductors, Comm. Math. Phys., 245 (2004), 215-247. doi: 10.1007/s00220-003-1001-7. Google Scholar

[27]

H. L. LiG. J. Zhang and K. J. Zhang, Algebraic time decay for the bipolar quantum hydrodynamic model, Math. Models Methods Appl. Sci., 18 (2008), 859-881. doi: 10.1142/S0218202508002887. Google Scholar

[28]

B. Liang and K. J. Zhang, Steady-state solutions and asymptotic limits on the multi-dimensional semiconductor quantum hydrodynamic model, Math. Models Methods Appl. Sci., 17 (2007), 253-275. doi: 10.1142/S0218202507001905. Google Scholar

[29]

B. Liang and S. M. Zheng, Exponential decay to a quantum hydrodynamic models for semiconductors, Nonlinear Analysis: Real World Application, 9 (2008), 326-337. doi: 10.1016/j.nonrwa.2006.11.001. Google Scholar

[30]

E. Madelunge, Quantentheorie in hydrodynamischer form, Z. Phys., 40 (1927), 322-326. doi: 10.1007/BF01400372. Google Scholar

[31]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations Springer, New York, 1990. doi: 10.1007/978-3-7091-6961-2. Google Scholar

[32]

A. Unterreiter, The thermal equilibrium solution of a generic bipolar quantum hydrodinamic model, Comm. Math. Phys., 188 (1997), 69-88. doi: 10.1007/s002200050157. Google Scholar

[33]

G. W. Wang, Exponential decay for the viscous bipolar Quantum hydrodynamic model, Ann.of Appl. Math., 31 (2015), 329-335. Google Scholar

[34]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Commun. Partial Differ. Equations, 29 (2004), 419-456. doi: 10.1081/PDE-120030403. Google Scholar

[35]

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759. doi: 10.1103/PhysRev.40.749. Google Scholar

[36]

X. H. Yang, Quasineutral limit of bipolar quantum hydrodynamic model for semiconductors, Frot. Math. China, 6 (2011), 349-362. doi: 10.1007/s11464-011-0102-4. Google Scholar

[37]

B. Zhang and J. Jerome, On a steady state quantum hydrodynamic model for semiconductors, Nonlinear Anal. TMA, 26 (1996), 845-856. doi: 10.1016/0362-546X(94)00326-D. Google Scholar

[38]

G. J. ZhangH. L. Li and K. J. Zhang, Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors, J. Diff. Eqns., 245 (2008), 1433-1453. doi: 10.1016/j.jde.2008.06.019. Google Scholar

[39]

G. J. Zhang and K. J. Zhang, On the bipolar multidimensional quantum Euler-Poisson system: The thermal equilibrium solution and semiclassical limit, Nonlinear Anal. TMA, 66 (2007), 2218-2229. doi: 10.1016/j.na.2006.03.010. Google Scholar

show all references

References:
[1]

M. G. Ancona and G. I. Iafrate, Quantum correction to the equation of state of an electron gas in a semiconductor, Phys. Revi. B, 39 (1989), 9536-9540. doi: 10.1103/PhysRevB.39.9536. Google Scholar

[2]

M. G. Ancona and H. F. Tiersten, Microscopic physics of the sillicon inversion layer, Phys. Revi. B, 35 (1987), 7959-7965. Google Scholar

[3]

P. Antonelli and P. Marcati, On the finite enegy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., 287 (2009), 657-686. doi: 10.1007/s00220-008-0632-0. Google Scholar

[4]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rat. Mech. Anal., 203 (2012), 499-527. doi: 10.1007/s00205-011-0454-7. Google Scholar

[5]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" valuables: Ⅰ; Ⅱ, Phys. Revi., 85 (1952), 166-179. doi: 10.1103/PhysRev.85.166. Google Scholar

[6]

L. Chen and M. Drether, The viscous model of quantum hydrodynamic in several dimensions, Math. Mod. Meth. in Appl. Sci, 17 (2007), 1065-1093. doi: 10.1142/S0218202507002200. Google Scholar

[7]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy priciple, J. Statist. Phys., 112 (2003), 587-628. doi: 10.1023/A:1023824008525. Google Scholar

[8]

I. Gamba and A. Jüngel, Positive solutions to singular second and third order differential equations for quantum fluids, Arch. Rational Mech. Anal., 156 (2001), 183-203. doi: 10.1007/s002050000114. Google Scholar

[9]

C. Gardner, The quantum hydrodynamic model for semiconductors devices, SIAM J. Appl. Math., 54 (1990), 409-427. doi: 10.1137/S0036139992240425. Google Scholar

[10]

M. P. GualdniA. Jüngel and G. Toscani, Exponential decay in time of solutions of the viscous quantum hydrodynamic equations, Appl. Math. Lett, 16 (2003), 1273-1278. doi: 10.1016/S0893-9659(03)90128-5. Google Scholar

[11]

M. P. Gualdini and A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors, Euro. Jnl. of Applied Mathematics, 15 (2004), 577-595. doi: 10.1017/S0956792504005686. Google Scholar

[12]

F. Haas, A magnetohydrodynamic model for quantum plasmas Physics of Plamas 12 (2005), 062117. doi: 10.1063/1.1939947. Google Scholar

[13]

C. C. HaoY. L. Jia and H. L. Li, Quantum Euler-Poisson system: Local existence, J. Partial Diff. Eqns., 16 (2003), 306-320. Google Scholar

[14]

L. Hsiao and H. L. Li, The well-posedness and asymptotics of multi-dimensional quantum hydrodynamics, Acta Math. Sci., 29 (2009), 552-568. doi: 10.1016/S0252-9602(09)60053-9. Google Scholar

[15]

F. HuangH. L. Li and A. Matsumura, Existence and stability of steady-state of one-dimensional quantum Euler-Poisson system for seimiconductors, J. Diff. Eqns., 225 (2006), 1-25. doi: 10.1016/j.jde.2006.02.002. Google Scholar

[16]

F. Huang, H. L. Li, A. Matsumura and S. Odanaka, Well-posedness and stability of multi-dimensional quantum hydrodynamics for semiconductors in R3, Series in Contemporary Applied Mathematics CAM 15 High Education Press, Beijing, 2010.Google Scholar

[17]

Y. L. Jia and H. L. Li, Large time behavior of solutions of quantum hydrodynamical model for semiconductors, Acat. Math. Sci., 26 (2006), 163-178. doi: 10.1016/S0252-9602(06)60038-6. Google Scholar

[18]

A. Jüngel, A steady-state potential flow Euler-Poisson system for charged quantum fluids, Comm. Math., 194 (1998), 463-479. Google Scholar

[19]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for qunatum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045. doi: 10.1137/090776068. Google Scholar

[20]

A. Jüngel and H. L. Li, Quantum Euler-Poisson systems: Existence and of stationary state, Arch. Math.(Brno), 40 (2004), 435-456. Google Scholar

[21]

A. Jüngel and H. L. Li, Quantum Euler-Poisson systems: Global existence and exponential decay, Quart. Appl. Math., 62 (2004), 569-600. doi: 10.1090/qam/2086047. Google Scholar

[22]

A. JüngelH. L. Li and A. Matsumura, The relaxation-time limit in the quantum hydrodynamic equations for semiconductors, J. Diff. Eqns., 225 (2006), 440-464. doi: 10.1016/j.jde.2005.11.007. Google Scholar

[23]

A. JüngelM. C. Mariani and D. Rial, Local exitence of solutins to the transient quantum hydrodynamic equations, Math. Mod. Meth. Appl. Sci., 12 (2002), 485-495. doi: 10.1142/S0218202502001751. Google Scholar

[24]

A. Jüngel and S. Q. Tang, Numerical approximation of the viscous quantum hydrodynamic model for semiconductors, Applied Numerical Mathematics, 56 (2006), 899-915. doi: 10.1016/j.apnum.2005.07.003. Google Scholar

[25]

H. L. Li and C. K. Lin, Zero-Debye length asymptotic of the quantum hydrodynamic model for semiconductors, Commun. Math. Phys., 256 (2005), 195-212. doi: 10.1007/s00220-005-1316-7. Google Scholar

[26]

H. L. Li and P. Marcati, Exitence and asymptotic behavior of multi-dimensional quantum hydrodynami cmodel for semiconductors, Comm. Math. Phys., 245 (2004), 215-247. doi: 10.1007/s00220-003-1001-7. Google Scholar

[27]

H. L. LiG. J. Zhang and K. J. Zhang, Algebraic time decay for the bipolar quantum hydrodynamic model, Math. Models Methods Appl. Sci., 18 (2008), 859-881. doi: 10.1142/S0218202508002887. Google Scholar

[28]

B. Liang and K. J. Zhang, Steady-state solutions and asymptotic limits on the multi-dimensional semiconductor quantum hydrodynamic model, Math. Models Methods Appl. Sci., 17 (2007), 253-275. doi: 10.1142/S0218202507001905. Google Scholar

[29]

B. Liang and S. M. Zheng, Exponential decay to a quantum hydrodynamic models for semiconductors, Nonlinear Analysis: Real World Application, 9 (2008), 326-337. doi: 10.1016/j.nonrwa.2006.11.001. Google Scholar

[30]

E. Madelunge, Quantentheorie in hydrodynamischer form, Z. Phys., 40 (1927), 322-326. doi: 10.1007/BF01400372. Google Scholar

[31]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations Springer, New York, 1990. doi: 10.1007/978-3-7091-6961-2. Google Scholar

[32]

A. Unterreiter, The thermal equilibrium solution of a generic bipolar quantum hydrodinamic model, Comm. Math. Phys., 188 (1997), 69-88. doi: 10.1007/s002200050157. Google Scholar

[33]

G. W. Wang, Exponential decay for the viscous bipolar Quantum hydrodynamic model, Ann.of Appl. Math., 31 (2015), 329-335. Google Scholar

[34]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Commun. Partial Differ. Equations, 29 (2004), 419-456. doi: 10.1081/PDE-120030403. Google Scholar

[35]

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759. doi: 10.1103/PhysRev.40.749. Google Scholar

[36]

X. H. Yang, Quasineutral limit of bipolar quantum hydrodynamic model for semiconductors, Frot. Math. China, 6 (2011), 349-362. doi: 10.1007/s11464-011-0102-4. Google Scholar

[37]

B. Zhang and J. Jerome, On a steady state quantum hydrodynamic model for semiconductors, Nonlinear Anal. TMA, 26 (1996), 845-856. doi: 10.1016/0362-546X(94)00326-D. Google Scholar

[38]

G. J. ZhangH. L. Li and K. J. Zhang, Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors, J. Diff. Eqns., 245 (2008), 1433-1453. doi: 10.1016/j.jde.2008.06.019. Google Scholar

[39]

G. J. Zhang and K. J. Zhang, On the bipolar multidimensional quantum Euler-Poisson system: The thermal equilibrium solution and semiclassical limit, Nonlinear Anal. TMA, 66 (2007), 2218-2229. doi: 10.1016/j.na.2006.03.010. Google Scholar

[1]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[2]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[3]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[4]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[5]

Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107

[6]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[7]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

[8]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[9]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[10]

Ming Mei, Bruno Rubino, Rosella Sampalmieri. Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinetic & Related Models, 2012, 5 (3) : 537-550. doi: 10.3934/krm.2012.5.537

[11]

Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1411-1448. doi: 10.3934/dcdsb.2018214

[12]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[13]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[14]

Feimin Huang, Yeping Li. Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 455-470. doi: 10.3934/dcds.2009.24.455

[15]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[16]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

[17]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[18]

Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596

[19]

Peter Markowich, Jesús Sierra. Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system. Kinetic & Related Models, 2019, 12 (2) : 347-356. doi: 10.3934/krm.2019015

[20]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (8)
  • Cited by (0)

Other articles
by authors

[Back to Top]