The present paper develops a framework for a Halanay type nonautonomous delay differential inequality with maxima, and establishes necessary and/or sufficient conditions for the global attractivity of the zero solution. The emphasis is put on the rate of convergence based on the theory of the generalized characteristic equation. The applicability and the sharpness of the results are illustrated by examples. This work aspires to serve as a remarkable step towards a unified theory of the nonautonomous Halanay inequality.
Citation: |
M. Adivar
and E. A. Bohner
, Halanay type inequalities on time scales with applications, Nonlinear Analysis, 74 (2011)
, 7519-7531.
doi: 10.1016/j.na.2011.08.007.![]() ![]() ![]() |
|
R. P. Agarwal
, Y. H. Kim
and S. K. Sen
, New discrete Halanay inequalities: Stability of difference equations, Communications in Applied Analysis, 12 (2008)
, 83-90.
![]() ![]() |
|
R. P. Agarwal, Y. H. Kim and S. K. Sen, Advanced discrete Halanay type inequalities: Stability of difference equations Journal of Inequalities and Applications (2009), Art. ID 535849, 11 pp.
doi: 10.1155/2009/535849.![]() ![]() ![]() |
|
E. Akın
, Y. N. Raffoul
and C. Tisdell
, Exponential stability in functional dynamic equations on time scales, Commun. Math. Anal., 9 (2010)
, 93-108.
![]() ![]() |
|
C. T. H. Baker
and A. Tang
, Generalized Halanay inequalities for Volterra functional differential equations and discretized versions, in Volterra Equations and Applications (eds. C. Corduneanu and I Sandberg), Stability Control Theory Methods Appl., vol. 10, Gordon and Breach, Amsterdam, (2000)
, 39-55.
![]() ![]() |
|
C. T. H. Baker
, Development and application of Halanay-type theory: Evolutionary differential and difference equations with time lag, J. Comput. Appl. Math., 234 (2010)
, 2663-2682.
doi: 10.1016/j.cam.2010.01.027.![]() ![]() ![]() |
|
L. Berezansky
and E. Braverman
, On oscillation of a second order impulsive linear delay differential equation, J. Math. Anal. Appl., 233 (1999)
, 276-300.
doi: 10.1006/jmaa.1999.6297.![]() ![]() ![]() |
|
S. N. Busenberg
and K. L. Cooke
, Stabilty conditions for linear non-autonomous delay differential equations, Quarterly of Applied Math., 42 (1984)
, 295-306.
doi: 10.1090/qam/757167.![]() ![]() ![]() |
|
C. Cuevas
and M. V. S. Frasson
, Asymptotic properties of solutions to linear nonautonomous delay differential equations through generalized characteristic equations, Electron. J. Qual. Theory Differ. Equ., No. 95 (2010)
, 1-5.
![]() |
|
J. G. Dix
, C. G. Philos
and I. K. Purnaras
, An asymptotic property of solutions to linear nonautonomous delay differential equations, Electron.J. Differential Equations, (2005)
, 1-9.
![]() ![]() |
|
J. G. Dix
, C. G. Philos
and I. K. Purnaras
, Asymptotic properties of solutions to linear non-autonomous neutral differential equations, J. Math. Anal. Appl., 318 (2006)
, 296-304.
doi: 10.1016/j.jmaa.2005.06.005.![]() ![]() ![]() |
|
R. D. Driver,
Ordinary and Delay Differential Equations Applied Mathematics Series 20, Springer-Verlag, New York, 1977.
![]() ![]() |
|
T. M. Flett,
Differential Analysis Cambridge University Press, 1980.
![]() ![]() |
|
I. Győri
, Oscillation conditions in scalar linear delay differential equations, Bull. Austral. Math. Soc., 34 (1986)
, 1-9.
doi: 10.1017/S0004972700004457.![]() ![]() ![]() |
|
I. Győri
and L. Horváth
, Sharp Gronwall-Bellman type integral inequalities with delay, Electron. J. Qual. Theory Differ. Equ., (2016)
, 1-25.
![]() |
|
I. Győri and G. Ladas,
Oscillation Theory of Delay Differential Equations Oxford Science Publications, Oxford, 1991.
![]() ![]() |
|
A. Halanay,
Differential Equations: Stability, Oscillations, Time Lags Academic Press, New York, 1966.
![]() ![]() |
|
J. K. Hale,
Theory of Functional Differential Equations Applied Math. Sciences, Vol. 3, Springer-Verlag, New York, 1977.
![]() ![]() |
|
J. Hoffacker
and C. Tisdell
, Stability and instability for dynamic equations on time scales, Comput. Math. Appl., 49 (2005)
, 1327-1334.
doi: 10.1016/j.camwa.2005.01.016.![]() ![]() ![]() |
|
A. Ivanov
, E. Liz
and S. Trofimchuk
, Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tohoku Math. J., 54 (2002)
, 277-295.
doi: 10.2748/tmj/1113247567.![]() ![]() ![]() |
|
E. Kaufmann
and Y.N. Raffoul
, Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale, Electron. J. Differential Equations, (2007)
, 1-12.
![]() |
|
B. Li
, Oscillation of first order delay differential equations, Proc. Amer. Math. Soc., 124 (1996)
, 3729-3737.
doi: 10.1090/S0002-9939-96-03674-X.![]() ![]() ![]() |
|
E. Liz
and J. B. Ferreiro
, A note on the global stability of generalized difference equations, Appl. Math. Lett., 15 (2002)
, 655-659.
doi: 10.1016/S0893-9659(02)00024-1.![]() ![]() ![]() |
|
E. Liz
and S. Trofimchuk
, Existence and stability of almost periodic solutions for quasilinear delay systems and the Halanay inequality, J. Math. Anal. Appl., 248 (2000)
, 625-644.
doi: 10.1006/jmaa.2000.6947.![]() ![]() ![]() |
|
S. Mohamad
and K. Gopalsamy
, Continuous and discrete Halanay-type inequalities, Bull. Austral Math. Soc., 61 (2000)
, 371-385.
doi: 10.1017/S0004972700022413.![]() ![]() ![]() |
|
B. Ou
, B. Jia
and L. Erbe
, An extended Halanay inequality of integral type on time scales, Electron. J. Qual. Theory Differ. Equ., (2015)
, 1-11.
![]() ![]() |
|
C. G. Philos
and I. K. Purnaras
, An asymptotic result for second order linear nonautonomous neutral delay differential equations, Hiroshima Math. J., 40 (2010)
, 47-63.
![]() ![]() |
|
H. Tian
, The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag, J. Math. Anal. Appl., 270 (2002)
, 143-149.
doi: 10.1016/S0022-247X(02)00056-2.![]() ![]() ![]() |
|
S. Udpin
and P. Niamsup
, New discrete type inequalities and global stability of nonlinear difference equations, Appl. Math. Lett., 22 (2009)
, 856-859.
doi: 10.1016/j.aml.2008.07.011.![]() ![]() ![]() |
|
W. Wang, A generalized Halanay inequality for stability of nonlinear neutral functional differential equations J. Inequal. Appl. (2010), Art. ID 475019, 16 pp.
doi: 10.1155/2010/475019.![]() ![]() ![]() |
|
L. Wen
, W. Wang
and Y. Yu
, Dissipativity and asymptotic stability of nonlinear neutral delay integro-differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010)
, 1746-1754.
doi: 10.1016/j.na.2009.09.016.![]() ![]() ![]() |
|
L. Wen
, Y. Yu
and W. Wang
, Generalized Halanay inequalities for dissipativity of Volterra functional differential equations, J. Math. Anal. Appl., 347 (2008)
, 169-178.
doi: 10.1016/j.jmaa.2008.05.007.![]() ![]() ![]() |
|
D. Xu
and Z. Yang
, Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., 305 (2005)
, 107-120.
doi: 10.1016/j.jmaa.2004.10.040.![]() ![]() ![]() |
|
T. Yoneyama
and J. Sugie
, Perturbing uniformly stable nonlinear scalar delay-differential equations, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988)
, 303-311.
doi: 10.1016/0362-546X(88)90116-2.![]() ![]() ![]() |