• Previous Article
    Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations
  • DCDS Home
  • This Issue
  • Next Article
    Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain
June  2017, 37(6): 3435-3465. doi: 10.3934/dcds.2017146

Asymptotic stability of stationary solutions for magnetohydrodynamic equations

School of Mathematical Science and Fujian Provincial Key Laboratory, on Mathematical Modeling & High Performance Scientific Computing, Xiamen University, Xiamen 361005, China

Received  July 2015 Revised  January 2017 Published  February 2017

Fund Project: Supported by the National Natural Science Foundation of China (Grant No. 11271305,11531010) and the Fundamental Research Funds for Xiamen University (No. 201412G004).

In this paper, we are concerned with the compressible magnetohydrodynamic equations with Coulomb force in three-dimensional space. We show the asymptotic stability of solutions to the Cauchy problem near the non-constant equilibrium state provided that the initial perturbation is sufficiently small. Moreover, the convergence rates are obtained by combining the linear Lp-Lq decay estimates and the higher-order energy estimates.

Citation: Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146
References:
[1]

M. AlessandroT. Yuri and T. Paola, Well-posedness of the linearized problem for MHD contact discontinuities, J. Differential Equations, 258 (2015), 2531-2571.  doi: 10.1016/j.jde.2014.12.018.  Google Scholar

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydroynamics equations, Nonlinear Anal., 72 (2010), 4438-4451.  doi: 10.1016/j.na.2010.02.019.  Google Scholar

[3]

G. Q. Chen and D. H. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[4]

G. Q. Chen and D. H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.  Google Scholar

[5]

L. L. Du and D. Q. Zhou, Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 47 (2015), 1562-1589.  doi: 10.1137/140959821.  Google Scholar

[6]

J.S. FanA. AhmedH. TasawarN. Gen and Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal. Real World Appl., 22 (2015), 423-434.  doi: 10.1016/j.nonrwa.2014.10.003.  Google Scholar

[7]

J. S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.  Google Scholar

[8]

J. S. Fan and W. H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660.  doi: 10.1016/j.na.2007.10.005.  Google Scholar

[9]

J. S. Fan and W. H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409.  doi: 10.1016/j.nonrwa.2007.10.001.  Google Scholar

[10]

E. FeireislA. Novotný and H. Petleltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[11]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[12]

C. C. Hao and H. L. Li, Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differential Equations, 246 (2009), 4791-4812.  doi: 10.1016/j.jde.2008.11.019.  Google Scholar

[13]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.  Google Scholar

[14]

X. P. Hu and D. H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.  doi: 10.1007/s00220-008-0497-2.  Google Scholar

[15]

X. P. Hu and D. H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294.  doi: 10.1137/080723983.  Google Scholar

[16]

X. P. Hu and D. H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[17]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary condtions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[18]

S. JiangQ. C. JuF. C. Li and Z. P. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.  doi: 10.1016/j.aim.2014.03.022.  Google Scholar

[19]

Q. C. JuF. C. Li and Y. Li, Asymptotic limits of the full comressible magnetohydrodynamic equations, SIAM J. Math. Anal., 45 (2013), 2597-2624.  doi: 10.1137/130913390.  Google Scholar

[20]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251 (2004), 365-376.  doi: 10.1007/s00220-004-1062-2.  Google Scholar

[21]

S. Kawashima, Smooth global solutions for two-dimensional equations of electromagneto fluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.  doi: 10.1007/BF03167869.  Google Scholar

[22]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad., 58 (1982), 384-387.  doi: 10.3792/pjaa.58.384.  Google Scholar

[23]

T. Kobayashi and T. Suzuki, Weak solutions to the Navier-Stokes-Poisson equation, Adv. Math. Sci. Appl., 18 (2008), 141-168.   Google Scholar

[24]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 259 (2015), 3202-3215.  doi: 10.1016/j.jde.2015.04.017.  Google Scholar

[25]

H. L. LiA. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in ℝ3, Arch. Ration. Mech. Anal., 196 (2010), 681-713.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[26]

H. L. LiX. Y. Xu and J. W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillationa and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[27]

F. C. Li and H. J. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect., 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.  Google Scholar

[28] P. L. Lions, Mathematical Topics in Fluids Mechanics. Oxford Lecture Ser. Math. Appl, Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[29] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.   Google Scholar
[30]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[31]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.  Google Scholar

[32]

Z. TanL. L. Tong and Y. Wang, Large time behavior of the compressible magnetohydrodynamic equations with Coulomb force, J. Math. Anal. Appl., 427 (2015), 600-617.  doi: 10.1016/j.jmaa.2015.02.077.  Google Scholar

[33]

Z. Tan and Y. J. Wang, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force, Nonlinear Anal., 71 (2009), 5866-5884.  doi: 10.1016/j.na.2009.05.012.  Google Scholar

[34]

Z. Tan and G. C. Wu, Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions, Nonlinear Anal. Real World Appl., 13 (2012), 650-664.  doi: 10.1016/j.nonrwa.2011.08.005.  Google Scholar

[35]

Z. Tan and H. Q. Wang, Optimal decay rates of the compressible magnetohydrodynamic equations, Nonlinear Anal. Real World Appl., 14 (2013), 188-201.  doi: 10.1016/j.nonrwa.2012.05.012.  Google Scholar

[36]

Z. TanY. J. Wang and Y. Wang, Stability of steady states of the Navier-Stokes-Poisson equations with non-flat doping profile, SIAM J. Math. Anal., 47 (2015), 179-209.  doi: 10.1137/130950069.  Google Scholar

[37]

Z. TanY. Wang and X. Zhang, Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in ℝ3, Kinet. Relat. Models, 5 (2012), 615-638.  doi: 10.3934/krm.2012.5.615.  Google Scholar

[38]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.  Google Scholar

[39]

D. H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.  Google Scholar

[40]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential Equations, 253 (2012), 273-297.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[41]

L. Zhang and S. Li, A regularity criterion for 2D MHD flows with horizontal dissipation and horizontal magnetic diffusion, Nonlinear Anal. Real World Appl., 21 (2015), 197-206.  doi: 10.1016/j.nonrwa.2014.07.005.  Google Scholar

[42]

G. J. ZhangH. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in ℝ3, J. Differential Equations, 250 (2011), 866-891.  doi: 10.1016/j.jde.2010.07.035.  Google Scholar

show all references

References:
[1]

M. AlessandroT. Yuri and T. Paola, Well-posedness of the linearized problem for MHD contact discontinuities, J. Differential Equations, 258 (2015), 2531-2571.  doi: 10.1016/j.jde.2014.12.018.  Google Scholar

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydroynamics equations, Nonlinear Anal., 72 (2010), 4438-4451.  doi: 10.1016/j.na.2010.02.019.  Google Scholar

[3]

G. Q. Chen and D. H. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[4]

G. Q. Chen and D. H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.  Google Scholar

[5]

L. L. Du and D. Q. Zhou, Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 47 (2015), 1562-1589.  doi: 10.1137/140959821.  Google Scholar

[6]

J.S. FanA. AhmedH. TasawarN. Gen and Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal. Real World Appl., 22 (2015), 423-434.  doi: 10.1016/j.nonrwa.2014.10.003.  Google Scholar

[7]

J. S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.  Google Scholar

[8]

J. S. Fan and W. H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660.  doi: 10.1016/j.na.2007.10.005.  Google Scholar

[9]

J. S. Fan and W. H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409.  doi: 10.1016/j.nonrwa.2007.10.001.  Google Scholar

[10]

E. FeireislA. Novotný and H. Petleltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[11]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[12]

C. C. Hao and H. L. Li, Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differential Equations, 246 (2009), 4791-4812.  doi: 10.1016/j.jde.2008.11.019.  Google Scholar

[13]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.  Google Scholar

[14]

X. P. Hu and D. H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.  doi: 10.1007/s00220-008-0497-2.  Google Scholar

[15]

X. P. Hu and D. H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294.  doi: 10.1137/080723983.  Google Scholar

[16]

X. P. Hu and D. H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[17]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary condtions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[18]

S. JiangQ. C. JuF. C. Li and Z. P. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.  doi: 10.1016/j.aim.2014.03.022.  Google Scholar

[19]

Q. C. JuF. C. Li and Y. Li, Asymptotic limits of the full comressible magnetohydrodynamic equations, SIAM J. Math. Anal., 45 (2013), 2597-2624.  doi: 10.1137/130913390.  Google Scholar

[20]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251 (2004), 365-376.  doi: 10.1007/s00220-004-1062-2.  Google Scholar

[21]

S. Kawashima, Smooth global solutions for two-dimensional equations of electromagneto fluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.  doi: 10.1007/BF03167869.  Google Scholar

[22]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad., 58 (1982), 384-387.  doi: 10.3792/pjaa.58.384.  Google Scholar

[23]

T. Kobayashi and T. Suzuki, Weak solutions to the Navier-Stokes-Poisson equation, Adv. Math. Sci. Appl., 18 (2008), 141-168.   Google Scholar

[24]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 259 (2015), 3202-3215.  doi: 10.1016/j.jde.2015.04.017.  Google Scholar

[25]

H. L. LiA. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in ℝ3, Arch. Ration. Mech. Anal., 196 (2010), 681-713.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[26]

H. L. LiX. Y. Xu and J. W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillationa and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[27]

F. C. Li and H. J. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect., 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.  Google Scholar

[28] P. L. Lions, Mathematical Topics in Fluids Mechanics. Oxford Lecture Ser. Math. Appl, Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[29] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.   Google Scholar
[30]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[31]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.  Google Scholar

[32]

Z. TanL. L. Tong and Y. Wang, Large time behavior of the compressible magnetohydrodynamic equations with Coulomb force, J. Math. Anal. Appl., 427 (2015), 600-617.  doi: 10.1016/j.jmaa.2015.02.077.  Google Scholar

[33]

Z. Tan and Y. J. Wang, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force, Nonlinear Anal., 71 (2009), 5866-5884.  doi: 10.1016/j.na.2009.05.012.  Google Scholar

[34]

Z. Tan and G. C. Wu, Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions, Nonlinear Anal. Real World Appl., 13 (2012), 650-664.  doi: 10.1016/j.nonrwa.2011.08.005.  Google Scholar

[35]

Z. Tan and H. Q. Wang, Optimal decay rates of the compressible magnetohydrodynamic equations, Nonlinear Anal. Real World Appl., 14 (2013), 188-201.  doi: 10.1016/j.nonrwa.2012.05.012.  Google Scholar

[36]

Z. TanY. J. Wang and Y. Wang, Stability of steady states of the Navier-Stokes-Poisson equations with non-flat doping profile, SIAM J. Math. Anal., 47 (2015), 179-209.  doi: 10.1137/130950069.  Google Scholar

[37]

Z. TanY. Wang and X. Zhang, Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in ℝ3, Kinet. Relat. Models, 5 (2012), 615-638.  doi: 10.3934/krm.2012.5.615.  Google Scholar

[38]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.  Google Scholar

[39]

D. H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.  Google Scholar

[40]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential Equations, 253 (2012), 273-297.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[41]

L. Zhang and S. Li, A regularity criterion for 2D MHD flows with horizontal dissipation and horizontal magnetic diffusion, Nonlinear Anal. Real World Appl., 21 (2015), 197-206.  doi: 10.1016/j.nonrwa.2014.07.005.  Google Scholar

[42]

G. J. ZhangH. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in ℝ3, J. Differential Equations, 250 (2011), 866-891.  doi: 10.1016/j.jde.2010.07.035.  Google Scholar

[1]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[2]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[3]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[4]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[5]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[9]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[10]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[11]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[14]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[19]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[20]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (62)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]