\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains

The author is supported by IPM grant 95340123

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the semilinear elliptic equation $ -\Delta u =\lambda f(u) $ in a smooth bounded domain $ \Omega $ of $ \Bbb{R}^{n} $ with Dirichlet boundary condition, where $ f $ is a $ C^{1} $ positive and nondeccreasing function in $ [0, \infty) $ such that $ \frac{f(t)}{t} \rightarrow \infty $ as $ t \rightarrow \infty $. When $ \Omega $ is an arbitrary domain and $ f $ is not necessarily convex, the boundedness of the extremal solution $ u^{*} $ is known only for $ n = 2 $, established by X. Cabré[5]. In this paper, we prove this for higher dimensions depending on the nonlinearity $ f $. In particular, we prove that if

    $ \frac{1}{2} < \beta_{-}:=\liminf\limits_{t\rightarrow\infty} \frac{f'(t)F(t)}{f(t)^{2}}\leq \beta_{+}:=\limsup\limits_{t\rightarrow\infty} \frac{f'(t)F(t)}{f(t)^{2}} < \infty, $

    where $ F(t)=\int_{0}^{t}f(s)ds $, then $ u^{*} \in L^{\infty}(\Omega) $, for $ n \leq 6 $. Also, if $\beta_{-}=\beta_{+}>\frac{1}{2} $ or $ \frac{1}{2} < \beta_{-}\leq \beta_{+} < \frac{7}{10} $, then $ u^{*} \in L^{\infty}(\Omega) $, for $ n \leq 9 $. Moreover, under the sole condition that $ \beta_{-} > \frac{1}{2} $ we have $ u^{*} \in H^{1}_{0}(\Omega) $ for $ n \geq 1 $. The same is true if for some $ \epsilon > 0 $ we have

    $$$ \frac{tf'(t)}{f(t)} \geq 1+\frac{1}{(\ln t)^{2-\epsilon}} ~~ \text{for large} ~ t, $$$

    which improves a similar result by Brezis and Vázquez [4].

    Mathematics Subject Classification: Primary: 35K57, 35B65; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Aghajani, New a priori estimates for semistable solutions of semilinear elliptic equations, Potential Anal., 44 (2016), 729-744.  doi: 10.1007/s11118-015-9528-8.
    [2] S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.
    [3] H. BrezisT. CazenaveY. Martel and A. Ramiandrisoa, Blow-up for $u_{t-\Delta u = g(u)}$ revisited, Adv. Differental Equation, 1 (1996), 73-90. 
    [4] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469. 
    [5] X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure Appl. Math., 63 (2010), 1362-1380.  doi: 10.1002/cpa.20327.
    [6] X. Cabré and A. Capella, Regularity of radial minimizers and extremal solutions of semi-linear elliptic equations, J. Funct. Anal., 238 (2006), 709-733.  doi: 10.1016/j.jfa.2005.12.018.
    [7] X. CabréA. Capella and M. Sanchéon, Regularity of radial minimizers of reaction equations involving the $ p $-Laplacian, Calc. Var. Partial Differential Equations, 34 (2009), 475-494.  doi: 10.1007/s00526-008-0192-3.
    [8] X. Cabré and X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, 38 (2013), 135-154.  doi: 10.1080/03605302.2012.697505.
    [9] X. Cabré and M. Sanchéon, Geometric-type Hardy-Sobolev inequalities and applications to regularity of minimizers, J. Funct. Anal., 264 (2013), 303-325.  doi: 10.1016/j.jfa.2012.10.012.
    [10] X. CabréM. Sanchéon and J. Spruck, A priori estimates for semistable solutions of semilinear elliptic equations, Discrete Contin. Dyn. Syst.. Series A, 36 (2016), 601-609.  doi: 10.3934/dcds.2016.36.601.
    [11] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58 (1975), 207-218.  doi: 10.1007/BF00280741.
    [12] J. DávilaL. Dupaigne and M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7 (2008), 795-817.  doi: 10.3934/cpaa.2008.7.795.
    [13] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, (2011).  doi: 10.1201/b10802.
    [14] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal., 49 (1973), 241-269.  doi: 10.1007/BF00250508.
    [15] F Mignot and J.-P. Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980), 791-836.  doi: 10.1080/03605308008820155.
    [16] G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. Ⅰ Math., 330 (2000), 997-1002.  doi: 10.1016/S0764-4442(00)00289-5.
    [17] G. Nedev, Extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris S'er. Ⅰ Math., 330 (2000), 997-1002.  doi: 10.1016/S0764-4442(00)00289-5.
    [18] M. Sanchéon, Boundedness of the extremal solution of some $p$-Laplacian problems, Nonlinear Anal., 67 (2007), 281-294.  doi: 10.1016/j.na.2006.05.010.
    [19] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302.  doi: 10.1007/BF02391014.
    [20] N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 265-308. 
    [21] S. Villegas, Boundedness of extremal solutions in dimension 4, Adv. Math., 235 (2013), 126-133.  doi: 10.1016/j.aim.2012.11.015.
    [22] D. Ye and F. Zhou, Boundedness of the extremal solution for semilinear elliptic problems, Commun. Contemp. Math., 4 (2002), 547-558.  doi: 10.1142/S0219199702000701.
  • 加载中
SHARE

Article Metrics

HTML views(291) PDF downloads(165) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return