• Previous Article
    Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting
  • DCDS Home
  • This Issue
  • Next Article
    Monotonicity and symmetry of solutions to fractional Laplacian equation
July  2017, 37(7): 3601-3623. doi: 10.3934/dcds.2017155

On a definition of Morse-Smale evolution processes

1. 

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

2. 

Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010,05508-090 São Paulo, Brazil

3. 

Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

* Corresponding author: Carlos Rocha

Received  June 2016 Revised  February 2017 Published  April 2017

Fund Project: This work was partially supported by FCT/Portugal through the project UID/MAT/04459/2013 and FAPESP thematic project 2015/21049-3

In this paper we consider a definition of Morse-Smale evolution process that extends the notion of Morse-Smale dynamical system to the nonautonomous framework. In particular we consider nonautonomous perturbations of autonomous systems. In this case our definition of Morse-Smale evolution process holds for perturbations of Morse-Smale autonomous systems with or without periodic orbits. We establish that small nonautonomous perturbations of autonomous Morse-Smale evolution processes derived from certain nonautonomous differential equations are Morse-Smale evolution processes. We apply our results to examples of scalar parabolic semilinear differential equations generating evolution processes and possessing periodic orbits.

Citation: Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155
References:
[1]

S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc., 307 (1988), 545-568.  doi: 10.1090/S0002-9947-1988-0940217-X.  Google Scholar

[2]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math. 1926, Springer, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[3]

N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.  Google Scholar

[4]

M. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[5]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[6]

A. N. Carvalho and J. A. Langa, An extention of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646-2668.  doi: 10.1016/j.jde.2009.01.007.  Google Scholar

[7]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation, Proc. Amer. Math. Soc., 140 (2012), 2357-2373.  doi: 10.1090/S0002-9939-2011-11071-2.  Google Scholar

[8]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Applied Math. Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[9]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747.  doi: 10.3934/dcdsb.2015.20.703.  Google Scholar

[10]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and Su′arez A., Characterization of nonautonomous attractors of a perturbed gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[11]

V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications 49, American Mathematical Society, Providence, R. I. , 2002.  Google Scholar

[12]

C. Chicone and Y. Latushkin, Center manifolds for infinite dimensional nonautonomous differential equations, J. Differential Equations, 141 (1997), 356-399.  doi: 10.1006/jdeq.1997.3343.  Google Scholar

[13]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society, Lecture Note Series 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[14]

N. S.-Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations, 74 (1988), 285-317.  doi: 10.1016/0022-0396(88)90007-1.  Google Scholar

[15]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society, Providence, R. I. , 1978.  Google Scholar

[16]

W. A. Coppel and K. J. Palmer, Averaging and integral manifolds, Bull. Austral. Math. Soc., 2 (1970), 197-222.  doi: 10.1017/S0004972700041812.  Google Scholar

[17]

R. Czaja and C. Rocha, Transversality in scalar reaction-diffusion equations on a circle, J. Differential Equations, 245 (2008), 692-721.  doi: 10.1016/j.jde.2008.01.018.  Google Scholar

[18]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[19]

B. FiedlerC. Rocha and M. Wolfrum, Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle, J. Differential Equations, 201 (2004), 99-138.  doi: 10.1016/j.jde.2003.10.027.  Google Scholar

[20]

J. K. Hale, Integral manifolds of perturbed differential systems, Ann. Math., 73 (1961), 496-531.  doi: 10.2307/1970314.  Google Scholar

[21]

J. K. Hale, Oscillations in Nonlinear Systems, Dover Publications, Inc., New York, 1992. Originally published by McGraw-Hill, New York, 1963.  Google Scholar

[22]

J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Co. , Inc. , Huntington, N. Y. , 1980.  Google Scholar

[23]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, R. I. , 1988.  Google Scholar

[24]

J. K. Hale, L. T. Magalh˜aes and W. M. Oliva, Dynamics in Infinite Dimensions, Second Edition, Applied Math. Sciences 47, Springer 2002. doi: 10.1007/b100032.  Google Scholar

[25]

D. Henry, Geometric Theory of Semilinear Equations, Lecture Notes in Math. 840, SpringerVerlag, 1981.  Google Scholar

[26]

D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations, 59 (1985), 165-205.  doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[27]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, 1977.  Google Scholar

[28]

R. Joly and G. Raugel, Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle, Trans. Amer. Math. Soc., 362 (2010), 5189-5211.  doi: 10.1090/S0002-9947-2010-04890-1.  Google Scholar

[29]

R. Joly and G. Raugel, Morse-Smale property for the parabolic equation on the circle, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 27 (2010), 1397-1440.  doi: 10.1016/j.anihpc.2010.09.001.  Google Scholar

[30]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs 176, American Mathematical Society, Providence, R. I. , 2011. doi: 10.1090/surv/176.  Google Scholar

[31]

S. G. Kryzhevich and V. A. Pliss, Structural stability of nonautonomous systems, Differential Equations, 39 (2003), 1395-1403.  doi: 10.1023/B:DIEQ.0000017913.79915.b1.  Google Scholar

[32]

W. M. Oliva, Morse-Smale semiflows, openness and A-stability, Fields Inst. Comm., 31 (2002), 285-307.   Google Scholar

[33]

J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1969), 305-404.  doi: 10.1016/0040-9383(69)90024-X.  Google Scholar

[34]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, SpringerVerlag, 1982.  Google Scholar

[35]

V. Pliss and G. R. Sell, Perturbations of attractors of differential equations, J. Differential Equations, 92 (1991), 100-124.  doi: 10.1016/0022-0396(91)90066-I.  Google Scholar

[36]

R. J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech., 18 (1969), 705-762.   Google Scholar

[37]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[39]

M. Urabe, Nonlinear Autonomous Oscillations, Mathematics in Science and Engineering 34, Academic Press, New York, 1967.  Google Scholar

[40]

A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynam. Report. , (N. S. ) 1, Springer (1992), 125-163.  Google Scholar

show all references

References:
[1]

S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc., 307 (1988), 545-568.  doi: 10.1090/S0002-9947-1988-0940217-X.  Google Scholar

[2]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math. 1926, Springer, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[3]

N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.  Google Scholar

[4]

M. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[5]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[6]

A. N. Carvalho and J. A. Langa, An extention of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646-2668.  doi: 10.1016/j.jde.2009.01.007.  Google Scholar

[7]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation, Proc. Amer. Math. Soc., 140 (2012), 2357-2373.  doi: 10.1090/S0002-9939-2011-11071-2.  Google Scholar

[8]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Applied Math. Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[9]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747.  doi: 10.3934/dcdsb.2015.20.703.  Google Scholar

[10]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and Su′arez A., Characterization of nonautonomous attractors of a perturbed gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[11]

V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications 49, American Mathematical Society, Providence, R. I. , 2002.  Google Scholar

[12]

C. Chicone and Y. Latushkin, Center manifolds for infinite dimensional nonautonomous differential equations, J. Differential Equations, 141 (1997), 356-399.  doi: 10.1006/jdeq.1997.3343.  Google Scholar

[13]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society, Lecture Note Series 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[14]

N. S.-Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations, 74 (1988), 285-317.  doi: 10.1016/0022-0396(88)90007-1.  Google Scholar

[15]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society, Providence, R. I. , 1978.  Google Scholar

[16]

W. A. Coppel and K. J. Palmer, Averaging and integral manifolds, Bull. Austral. Math. Soc., 2 (1970), 197-222.  doi: 10.1017/S0004972700041812.  Google Scholar

[17]

R. Czaja and C. Rocha, Transversality in scalar reaction-diffusion equations on a circle, J. Differential Equations, 245 (2008), 692-721.  doi: 10.1016/j.jde.2008.01.018.  Google Scholar

[18]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[19]

B. FiedlerC. Rocha and M. Wolfrum, Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle, J. Differential Equations, 201 (2004), 99-138.  doi: 10.1016/j.jde.2003.10.027.  Google Scholar

[20]

J. K. Hale, Integral manifolds of perturbed differential systems, Ann. Math., 73 (1961), 496-531.  doi: 10.2307/1970314.  Google Scholar

[21]

J. K. Hale, Oscillations in Nonlinear Systems, Dover Publications, Inc., New York, 1992. Originally published by McGraw-Hill, New York, 1963.  Google Scholar

[22]

J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Co. , Inc. , Huntington, N. Y. , 1980.  Google Scholar

[23]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, R. I. , 1988.  Google Scholar

[24]

J. K. Hale, L. T. Magalh˜aes and W. M. Oliva, Dynamics in Infinite Dimensions, Second Edition, Applied Math. Sciences 47, Springer 2002. doi: 10.1007/b100032.  Google Scholar

[25]

D. Henry, Geometric Theory of Semilinear Equations, Lecture Notes in Math. 840, SpringerVerlag, 1981.  Google Scholar

[26]

D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations, 59 (1985), 165-205.  doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[27]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, 1977.  Google Scholar

[28]

R. Joly and G. Raugel, Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle, Trans. Amer. Math. Soc., 362 (2010), 5189-5211.  doi: 10.1090/S0002-9947-2010-04890-1.  Google Scholar

[29]

R. Joly and G. Raugel, Morse-Smale property for the parabolic equation on the circle, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 27 (2010), 1397-1440.  doi: 10.1016/j.anihpc.2010.09.001.  Google Scholar

[30]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs 176, American Mathematical Society, Providence, R. I. , 2011. doi: 10.1090/surv/176.  Google Scholar

[31]

S. G. Kryzhevich and V. A. Pliss, Structural stability of nonautonomous systems, Differential Equations, 39 (2003), 1395-1403.  doi: 10.1023/B:DIEQ.0000017913.79915.b1.  Google Scholar

[32]

W. M. Oliva, Morse-Smale semiflows, openness and A-stability, Fields Inst. Comm., 31 (2002), 285-307.   Google Scholar

[33]

J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1969), 305-404.  doi: 10.1016/0040-9383(69)90024-X.  Google Scholar

[34]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, SpringerVerlag, 1982.  Google Scholar

[35]

V. Pliss and G. R. Sell, Perturbations of attractors of differential equations, J. Differential Equations, 92 (1991), 100-124.  doi: 10.1016/0022-0396(91)90066-I.  Google Scholar

[36]

R. J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech., 18 (1969), 705-762.   Google Scholar

[37]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[39]

M. Urabe, Nonlinear Autonomous Oscillations, Mathematics in Science and Engineering 34, Academic Press, New York, 1967.  Google Scholar

[40]

A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynam. Report. , (N. S. ) 1, Springer (1992), 125-163.  Google Scholar

Figure 1.  Phase portrait of the autonomous equation (10) for $\delta>0$ .
Figure 2.  Recurrent behavior for $\xi=(t, z(t))$ . Here $t_+-\bar t>\overline T$ and $\bar{t}-t_->\overline T$ .
[1]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[2]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[3]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[4]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[5]

Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073

[6]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-24. doi: 10.3934/dcdss.2020092

[7]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[8]

Alexey Cheskidov, Landon Kavlie. Pullback attractors for generalized evolutionary systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 749-779. doi: 10.3934/dcdsb.2015.20.749

[9]

Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 473-487. doi: 10.3934/dcdsb.2019190

[10]

Tomás Caraballo, Stefanie Sonner. Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6383-6403. doi: 10.3934/dcds.2017277

[11]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[12]

Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473

[13]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020065

[14]

Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585

[15]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[16]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[17]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[18]

María Barbero Liñán, Hernán Cendra, Eduardo García Toraño, David Martín de Diego. Morse families and Dirac systems. Journal of Geometric Mechanics, 2019, 11 (4) : 487-510. doi: 10.3934/jgm.2019024

[19]

Luís Silva. Periodic attractors of nonautonomous flat-topped tent systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1867-1874. doi: 10.3934/dcdsb.2018243

[20]

Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (19)
  • HTML views (5)
  • Cited by (1)

Other articles
by authors

[Back to Top]