-
Previous Article
The energy-critical NLS with inverse-square potential
- DCDS Home
- This Issue
-
Next Article
Measure-preservation criteria for a certain class of 1-lipschitz functions on Zp in mahler's expansion
Conjugacies of model sets
1. | Université de Lyon, Université Claude Bernard Lyon 1, Institute Camille Jordan, CNRS UMR 5208, 69622 Villeurbanne, France |
2. | Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA |
Let $M$ be a model set meeting two simple conditions: (1) the internal group $H$ is $\mathbb{R}^n$ (or a product of $\mathbb{R}^n$ and a finite group) and (2) the window $W$ is a finite union of disjoint polyhedra. Then any Delone set with finite local complexity (FLC) that is topologically conjugate to $M$ is mutually locally derivable (MLD) to a model set $M'$ that has the same internal group and window as $M$, but has a different projection from $H × \mathbb{R}^d$ to $\mathbb{R}^d$. In cohomological terms, this means that the group $H^1_{an}(M, \mathbb{R})$ of asymptotically negligible classes has dimension $n$. We also exhibit a counterexample when the second hypothesis is removed, constructing two topologically conjugate FLC Delone sets, one a model set and the other not even a Meyer set.
References:
[1] |
J. E. Anderson and I. F. Putnam,
Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Th. & Dynam. Syst., 18 (1998), 509-537.
doi: 10.1017/S0143385798100457. |
[2] |
J. B. Aujogue, M. Barge, J. Kellendonk and D Lenz,
Equicontinuous factors, proximality and Ellis semigroup for Delone sets, in, Mathematics of Aperiodic Order, 309 (2015), 137-194.
doi: 10.1007/978-3-0348-0903-0_5. |
[3] |
M. Baake and U. Grimm, Aperiodic Order: Volume 1, A Mathematical Invitation (Encyclopedia of Mathematics and its Applications) Cambridge University Press 2013.
doi: 10.1017/CBO9781139025256. |
[4] |
M. Baake and D. Lenz,
Deformation of Delone dynamical systems and pure point diffraction, Journal of Fourier Analysis and Applications, 11 (2005), 125-150.
doi: 10.1007/s00041-005-4021-1. |
[5] |
M. Baake and R. V. Moody,
Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. (Crelle), 573 (2004), 61-94.
doi: 10.1515/crll.2004.064. |
[6] |
V. Baker, M. Barge and J. Kwapisz,
Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to beta-shifts, Annales-Institut Fourier, 56 (2006), 2213-2248.
doi: 10.5802/aif.2238. |
[7] |
M. Barge and J. Kellendonk,
Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., 62 (2013), 793-822.
doi: 10.1307/mmj/1387226166. |
[8] |
M. Barge, J. Kellendonk and S. Schmieding,
Maximal equicontinuous factors and cohomology for tiling spaces, Fundamenta Mathematicae, 218 (2012), 243-268.
doi: 10.4064/fm218-3-3. |
[9] |
M. Barge, S. ŠStimac and R. F. Williams,
Pure discrete spectrum in substitution tiling spaces, Disc. & Cont. Dynam. Sys. A, 33 (2013), 579-597.
doi: 10.3934/dcds.2013.33.579. |
[10] |
G. Bernuau and M. Duneau,
Fourier analysis of deformed model sets, Directions in Mathematical Quasicrystals, CRM Monograph Series, AMS, Providence, RI, (2000), 43-60.
|
[11] |
H. Boulmezaoud, Cohomologie des pavages et leurs déformations, PhD-thesis, Lyon, 2009. Google Scholar |
[12] |
H. Boulmezaoud and J. Kellendonk.,
Comparing different versions of tiling cohomology, Topology and its Applications, 157 (2010), 2225-2239.
doi: 10.1016/j.topol.2010.06.004. |
[13] |
A. Clark and L. Sadun,
When shape matters: Deformations of tiling spaces, Ergod. Th. & Dynam. Systems, 26 (2006), 69-86.
doi: 10.1017/S0143385705000623. |
[14] |
J. Kellendonk,
Pattern-equivariant functions and cohomology, J. Phys A., 36 (2003), 5765-5772.
doi: 10.1088/0305-4470/36/21/306. |
[15] |
J. Kellendonk,
Pattern equivariant functions, deformations and equivalence of tiling spaces, Ergodic Theory Dynam. Systems, 28 (2008), 1153-1176.
doi: 10.1017/S014338570700065X. |
[16] |
J. Kellendonk and I. F. Putnam,
The Ruelle-Sullivan map for actions of $\mathbb{R}^n$, Math. Ann., 334 (2006), 693-711.
doi: 10.1007/s00208-005-0728-1. |
[17] |
J. Kellendonk and L. Sadun,
Meyer sets, topological eigenvalues, and Cantor fiber bundles, J. London Math. Soc, 89 (2014), 114-130.
doi: 10.1112/jlms/jdt062. |
[18] |
J.-Y. Lee,
Substitution Delone sets with pure point spectrum are inter-model sets, J. Geom. Phys., 57 (2007), 2263-2285.
doi: 10.1016/j.geomphys.2007.07.003. |
[19] |
D. Rudolph,
Rectangular tilings of $\mathbb{R}^n$ and free $\mathbb{R}^n$-actions, Dynamical systems, Springer Berlin Heidelberg, 1342 (1988), 653-688.
doi: 10.1007/BFb0082854. |
[20] |
L. Sadun,
Pattern-equivariant cohomology with integer coefficients, Ergodic Theory and Dynamical Systems, 27 (2007), 1991-1998.
doi: 10.1017/S0143385707000259. |
[21] |
L. Sadun,
Tiling spaces are inverse limits, J. Math. Physics, 44 (2003), 5410-5414.
doi: 10.1063/1.1613041. |
[22] |
M. Schlottmann,
Generalized model sets and dynamical systems, Directions in Mathematical Quasicrystals, CRM Monograph Series, AMS, Providence, 13 (2000), 143-159.
|
[23] |
B. Sing, Pisot Substitutions and Beyond, PhD thesis, Universität Bielefeld, 2007. Google Scholar |
show all references
References:
[1] |
J. E. Anderson and I. F. Putnam,
Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Th. & Dynam. Syst., 18 (1998), 509-537.
doi: 10.1017/S0143385798100457. |
[2] |
J. B. Aujogue, M. Barge, J. Kellendonk and D Lenz,
Equicontinuous factors, proximality and Ellis semigroup for Delone sets, in, Mathematics of Aperiodic Order, 309 (2015), 137-194.
doi: 10.1007/978-3-0348-0903-0_5. |
[3] |
M. Baake and U. Grimm, Aperiodic Order: Volume 1, A Mathematical Invitation (Encyclopedia of Mathematics and its Applications) Cambridge University Press 2013.
doi: 10.1017/CBO9781139025256. |
[4] |
M. Baake and D. Lenz,
Deformation of Delone dynamical systems and pure point diffraction, Journal of Fourier Analysis and Applications, 11 (2005), 125-150.
doi: 10.1007/s00041-005-4021-1. |
[5] |
M. Baake and R. V. Moody,
Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. (Crelle), 573 (2004), 61-94.
doi: 10.1515/crll.2004.064. |
[6] |
V. Baker, M. Barge and J. Kwapisz,
Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to beta-shifts, Annales-Institut Fourier, 56 (2006), 2213-2248.
doi: 10.5802/aif.2238. |
[7] |
M. Barge and J. Kellendonk,
Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., 62 (2013), 793-822.
doi: 10.1307/mmj/1387226166. |
[8] |
M. Barge, J. Kellendonk and S. Schmieding,
Maximal equicontinuous factors and cohomology for tiling spaces, Fundamenta Mathematicae, 218 (2012), 243-268.
doi: 10.4064/fm218-3-3. |
[9] |
M. Barge, S. ŠStimac and R. F. Williams,
Pure discrete spectrum in substitution tiling spaces, Disc. & Cont. Dynam. Sys. A, 33 (2013), 579-597.
doi: 10.3934/dcds.2013.33.579. |
[10] |
G. Bernuau and M. Duneau,
Fourier analysis of deformed model sets, Directions in Mathematical Quasicrystals, CRM Monograph Series, AMS, Providence, RI, (2000), 43-60.
|
[11] |
H. Boulmezaoud, Cohomologie des pavages et leurs déformations, PhD-thesis, Lyon, 2009. Google Scholar |
[12] |
H. Boulmezaoud and J. Kellendonk.,
Comparing different versions of tiling cohomology, Topology and its Applications, 157 (2010), 2225-2239.
doi: 10.1016/j.topol.2010.06.004. |
[13] |
A. Clark and L. Sadun,
When shape matters: Deformations of tiling spaces, Ergod. Th. & Dynam. Systems, 26 (2006), 69-86.
doi: 10.1017/S0143385705000623. |
[14] |
J. Kellendonk,
Pattern-equivariant functions and cohomology, J. Phys A., 36 (2003), 5765-5772.
doi: 10.1088/0305-4470/36/21/306. |
[15] |
J. Kellendonk,
Pattern equivariant functions, deformations and equivalence of tiling spaces, Ergodic Theory Dynam. Systems, 28 (2008), 1153-1176.
doi: 10.1017/S014338570700065X. |
[16] |
J. Kellendonk and I. F. Putnam,
The Ruelle-Sullivan map for actions of $\mathbb{R}^n$, Math. Ann., 334 (2006), 693-711.
doi: 10.1007/s00208-005-0728-1. |
[17] |
J. Kellendonk and L. Sadun,
Meyer sets, topological eigenvalues, and Cantor fiber bundles, J. London Math. Soc, 89 (2014), 114-130.
doi: 10.1112/jlms/jdt062. |
[18] |
J.-Y. Lee,
Substitution Delone sets with pure point spectrum are inter-model sets, J. Geom. Phys., 57 (2007), 2263-2285.
doi: 10.1016/j.geomphys.2007.07.003. |
[19] |
D. Rudolph,
Rectangular tilings of $\mathbb{R}^n$ and free $\mathbb{R}^n$-actions, Dynamical systems, Springer Berlin Heidelberg, 1342 (1988), 653-688.
doi: 10.1007/BFb0082854. |
[20] |
L. Sadun,
Pattern-equivariant cohomology with integer coefficients, Ergodic Theory and Dynamical Systems, 27 (2007), 1991-1998.
doi: 10.1017/S0143385707000259. |
[21] |
L. Sadun,
Tiling spaces are inverse limits, J. Math. Physics, 44 (2003), 5410-5414.
doi: 10.1063/1.1613041. |
[22] |
M. Schlottmann,
Generalized model sets and dynamical systems, Directions in Mathematical Quasicrystals, CRM Monograph Series, AMS, Providence, 13 (2000), 143-159.
|
[23] |
B. Sing, Pisot Substitutions and Beyond, PhD thesis, Universität Bielefeld, 2007. Google Scholar |
[1] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[2] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[3] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[4] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[5] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[6] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[7] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[8] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[9] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[10] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[11] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[12] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[13] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[14] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[15] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[16] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[17] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[18] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[19] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[20] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]