We consider the defocusing energy-critical nonlinear Schrödinger equation with inverse-square potential $iu_t = -Δ u + a|x|^{-2}u + |u|^4u$ in three space dimensions. We prove global well-posedness and scattering for $a > - \frac{1}{4} + \frac{1}{{25}}$. We also carry out the variational analysis needed to treat the focusing case.
Citation: |
G. Andrews, R. Askey and R. Roy,
Special Functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781107325937.![]() ![]() ![]() |
|
T. Aubin
, Problémes isopérimétriques et espaces de Sobolev, J. Diff. Geom., 11 (1976)
, 573-598.
doi: 10.4310/jdg/1214433725.![]() ![]() ![]() |
|
H. Bahouri
and P. Gérard
, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999)
, 131-175.
doi: 10.1353/ajm.1999.0001.![]() ![]() ![]() |
|
G. A. Bliss
, An integral inequality, J. London Math. Soc., 5 (1930)
, 40-46.
doi: 10.1112/jlms/s1-5.1.40.![]() ![]() ![]() |
|
J. Bourgain
, Global well-posedness of defocusing 3D critical NLS in the radial case, J. Amer. Math. Soc., 12 (1999)
, 145-171.
doi: 10.1090/S0894-0347-99-00283-0.![]() ![]() ![]() |
|
H. Brézis
and E. Lieb
, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
N. Burq
, F. Planchon
, J. Stalker
and A. S. Tahvildar-Zadeh
, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003)
, 519-549.
doi: 10.1016/S0022-1236(03)00238-6.![]() ![]() ![]() |
|
N. Burq
, F. Planchon
, J. Stalker
and A. S. Tahvildar-Zadeh
, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004)
, 1665-1680.
doi: 10.1512/iumj.2004.53.2541.![]() ![]() ![]() |
|
M. Christ
and A. Kiselev
, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001)
, 409-425.
doi: 10.1006/jfan.2000.3687.![]() ![]() ![]() |
|
M. Christ
and M. Weinstein
, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991)
, 87-109.
doi: 10.1016/0022-1236(91)90103-C.![]() ![]() ![]() |
|
J. Colliander
, M. Keel
, G. Staffilani
, H. Takaoka
and T. Tao
, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\delta_1=\delta_1(d, \delta_0)$, Ann. of Math., 167 (2008)
, 767-865.
doi: 10.4007/annals.2008.167.767.![]() ![]() ![]() |
|
B. Dodson, Global well-posedness and scattering for the focusing, energy-critical nonlinear Schrödinger problem in dimension d=4 for initial data below a ground state threshold, preprint, arXiv: 1409.1950.
![]() |
|
L. Fanelli
, V. Felli
, M. A. Fontelos
and A. Primo
, Time decay of scaling critical electromagnetic Schrödinger flows, Comm. Math. Phys., 324 (2013)
, 1033-1067.
doi: 10.1007/s00220-013-1830-y.![]() ![]() ![]() |
|
P. Gérard
, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998)
, 213-233.
doi: 10.1051/cocv:1998107.![]() ![]() ![]() |
|
A. D. Ionescu
and B. Pausader
, Global well-posedness of the energy-critical defocusing NLS on ${\mathbb{R}}×\mathbb{T}^3$, Comm. Math. Phys., 312 (2012)
, 781-831.
doi: 10.1007/s00220-012-1474-3.![]() ![]() ![]() |
|
A. D. Ionescu
and B. Pausader
, The energy-critical defocusing NLS on $\mathbb{T}^3$, Duke Math. J., 161 (2012)
, 1581-1612.
doi: 10.1215/00127094-1593335.![]() ![]() ![]() |
|
A. D. Ionescu
, B. Pausader
and G. Staffilani
, On the global well-posedness of energy-critical Schrödinger equations in curved spaces, Anal. PDE, 5 (2012)
, 705-746.
doi: 10.2140/apde.2012.5.705.![]() ![]() ![]() |
|
C. Jao
, The energy-critical quantum harmonic oscillator, Comm. Partial Differential Equations, 41 (2016)
, 79-133.
doi: 10.1080/03605302.2015.1095767.![]() ![]() ![]() |
|
C. Jao, Energy-critical NLS with potentials of quadratic growth, preprint, arXiv: 1411.4950
![]() |
|
H. Kalf
, U. W. Schmincke
, J. Walter
and R. Wüst
, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in Spectral theory and differential equations, Lect, Notes in Math., 448 (1975)
, 182-226.
![]() ![]() |
|
M. Keel
and T. Tao
, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998)
, 955-980.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
|
C. Kenig
and F. Merle
, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006)
, 645-675.
doi: 10.1007/s00222-006-0011-4.![]() ![]() ![]() |
|
S. Keraani
, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006)
, 171-192.
doi: 10.1016/j.jfa.2005.10.005.![]() ![]() ![]() |
|
R. Killip
, S. Kwon
, S. Shao
and M. Visan
, On the mass-critical generalized KdV equation, Discrete Continuous Dynam. Systems -A, 32 (2012)
, 191-221.
doi: 10.3934/dcds.2012.32.191.![]() ![]() ![]() |
|
R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, Multipliers and Riesz transforms for the Schrödinger operator with inverse-square potential, preprint, arXiv: 1503.02716.
![]() |
|
R. Killip, T. Oh, O. Pocovnicu and M. Visan, Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on ${\mathbb{R}}^3$ To appear in Arch. Ration. Mech. Anal. preprint, arXiv: 1409.6734.
![]() |
|
R. Killip
, B. Stovall
and M. Visan
, Scattering for the cubic Klein-Gordon equation in two space dimensions, Trans. Amer. Math. Soc., 364 (2012)
, 1571-1631.
doi: 10.1090/S0002-9947-2011-05536-4.![]() ![]() ![]() |
|
R. Killip
and M. Visan
, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010)
, 361-424.
doi: 10.1353/ajm.0.0107.![]() ![]() ![]() |
|
R. Killip
and M. Visan
, Nonlinear Schrödinger equations at critical regularity, in Evolution equations, Clay Math. Proc, Amer. Math. Soc., 17 (2013)
, 325-437.
![]() ![]() |
|
R. Killip
and M. Visan
, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, 5 (2012)
, 855-885.
doi: 10.2140/apde.2012.5.855.![]() ![]() ![]() |
|
R. Killip
, M. Visan
and X. Zhang
, Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math., 138 (2016)
, 1193-1346.
doi: 10.1353/ajm.2016.0039.![]() ![]() ![]() |
|
H. Koch, D. Tataru and M. Visan,
Dispersive Equations and Nonlinear Waves Oberwolfach Seminars, 45 Birkhauser/Springer Basel AG, Basel, 2014.
doi: 10.1007/978-3-0348-0736-4.![]() ![]() |
|
E. Lieb and M. Loss,
Analysis Second edition. Graduate Studies in Mathematics, 14 American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
|
V. Liskevich
and Z. Sobol
, Estimates of integral kernels for semigroups associated with second order elliptic operators with singular coefficients, Potential Anal., 18 (2003)
, 359-390.
doi: 10.1023/A:1021877025938.![]() ![]() ![]() |
|
P. D. Milman
and Yu. A. Semenov
, Global heat kernel bounds via desingularizing weights, J. Funct. Anal., 212 (2004)
, 373-398.
doi: 10.1016/j.jfa.2003.12.008.![]() ![]() ![]() |
|
B. Pausader
, N. Tzvetkov
and X. Wang
, Global regularity for the energy-critical NLS on $\mathbb{S}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014)
, 315-338.
doi: 10.1016/j.anihpc.2013.03.006.![]() ![]() ![]() |
|
F. Planchon
, J. Stalker
and A. S. Tahvildar-Zadeh
, Dispersive estimates for wave equation with the inverse-square potential, Discrete Contin. Dynam. Systems, 9 (2003)
, 1387-1400.
doi: 10.3934/dcds.2003.9.1387.![]() ![]() ![]() |
|
M. Reed and B. Simon,
Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.
![]() ![]() |
|
E. Ryckman
and M. Visan
, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in ${{\mathbb{R}}^{1+4}}$, Amer. J. Math., 129 (2007)
, 1-60.
doi: 10.1353/ajm.2007.0004.![]() ![]() ![]() |
|
G. Talenti
, Best constant in Sobolev inequality, Ann. Mat. Pura. Appl., 110 (1976)
, 353-372.
doi: 10.1007/BF02418013.![]() ![]() ![]() |
|
T. Tao
, Global well-posedness and scattering for higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. of Math., 11 (2005)
, 57-80.
![]() ![]() |
|
T. Tao
and M. Visan
, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Diff. Eqns., 118 (2005)
, 1-28.
![]() ![]() |
|
J. L. Vazquez
and E. Zuazua
, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000)
, 103-153.
doi: 10.1006/jfan.1999.3556.![]() ![]() ![]() |
|
M. Visan,
The Defocusing Energy-Critical Nonlinear Schrödinger Equation in Dimensions Five and Higher Ph. D Thesis, UCLA, 2006.
![]() ![]() |
|
M. Visan
, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007)
, 281-374.
doi: 10.1215/S0012-7094-07-13825-0.![]() ![]() ![]() |
|
J. Zhang
and J. Zheng
, Scattering theory for nonlinear Schrödinger with inverse-square potential, J. Funct. Anal., 267 (2014)
, 2907-2932.
doi: 10.1016/j.jfa.2014.08.012.![]() ![]() ![]() |