July  2017, 37(7): 3867-3903. doi: 10.3934/dcds.2017163

Uniformly expanding Markov maps of the real line: Exactness and infinite mixing

1. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5,40126 Bologna, Italy

2. 

Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Via Irnerio 46,40126 Bologna, Italy

Received  January 2015 Revised  February 2017 Published  April 2017

Fund Project: The author was partially supported by PRIN Grant 2012AZS52J 001 (MIUR, Italy)

We give a fairly complete characterization of the exact components of a large class of uniformly expanding Markov maps of $ {\mathbb{R}}$. Using this result, for a class of $ $ $\mathbb{Z}$-invariant maps and finite modifications thereof, we prove certain properties of infinite mixing recently introduced by the author.

Citation: Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163
References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

J. Aaronson and M. Denker, Group extensions of Gibbs-Markov maps, Probab. Theory Related Fields, 123 (2002), 28-40.  doi: 10.1007/s004400100173.  Google Scholar

[3]

R. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole, Israel J. Math., 16 (1973), 263-278.  doi: 10.1007/BF02756706.  Google Scholar

[4]

R. Artuso and G. Cristadoro, Weak chaos and anomalous transport: A deterministic approach, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 137-148.  doi: 10.1016/S1007-5704(03)00025-X.  Google Scholar

[5]

R. Artuso and G. Cristadoro, Anomalous transport: A deterministic approach, Phys. Rev. Lett. , 90 (2003), 244101. Google Scholar

[6]

G. Atkinson, Recurrence for co-cycles and random walks, J. London. Math. Soc.(2), 13 (1976), 486-488.  doi: 10.1112/jlms/s2-13.3.486.  Google Scholar

[7]

A. BianchiG. CristadoroM. Lenci and M. Ligabò, Random walks in a one-dimensional Lévy random environment, J. Stat. Phys., 163 (2016), 22-40.  doi: 10.1007/s10955-016-1469-0.  Google Scholar

[8]

A. Boyarsky and P. Góra, Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension Probability and its Applications. Birkhäuser, Boston, MA, 1997. doi: 10.1007/978-1-4612-2024-4.  Google Scholar

[9]

P. Bugiel, Approximation for the measures of ergodic transformations of the real line, Z. Wahrsch. Verw. Gebiete, 59 (1982), 27-38.  doi: 10.1007/BF00575523.  Google Scholar

[10]

P. Bugiel, On the exactness of a class of endomorphisms of the real line, Univ. Iagel. Acta Math., 25 (1985), 53-65.   Google Scholar

[11]

D. DolgopyatD. Szász and T. Varjú, Limit theorems for locally perturbed planar Lorentz processes, Duke Math. J., 148 (2009), 459-499.  doi: 10.1215/00127094-2009-031.  Google Scholar

[12]

R. G. Gallager, Stochastic Processes. Theory for Applications Cambridge University Press, Cambridge, 2013.  Google Scholar

[13]

A.B. Hajian and S. Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc., 110 (1964), 136-151.  doi: 10.1090/S0002-9947-1964-0154961-1.  Google Scholar

[14]

A. Iksanov and A. Yu. Pilipenko, A functional limit theorem for locally perturbed random walks, preprint, arXiv: 1504.06930. Google Scholar

[15]

G. KellerP. Howard and R. Klages, Continuity properties of transport coefficients in simple maps, Nonlinearity, 21 (2008), 1719-1743.  doi: 10.1088/0951-7715/21/8/003.  Google Scholar

[16]

R. Klages, Suppression and enhancement of diffusion in disordered dynamical systems Phys. Rev. E, 65 (2002), 055203(R). doi: 10.1103/PhysRevE.65.055203.  Google Scholar

[17]

M. Lenci, Aperiodic Lorentz gas: recurrence and ergodicity, Ergodic Theory Dynam. Systems, 23 (2003), 869-883.  doi: 10.1017/S0143385702001529.  Google Scholar

[18]

M. Lenci, Typicality of recurrence for Lorentz gases, Ergodic Theory Dynam. Systems, 26 (2006), 799-820.  doi: 10.1017/S0143385706000022.  Google Scholar

[19]

M. Lenci, Central Limit Theorem and recurrence for random walks in bistochastic random environments J. Math. Phys. , 49 (2008), 125213, 9pp. doi: 10.1063/1.3005226.  Google Scholar

[20]

M. Lenci, On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.  doi: 10.1007/s00220-010-1043-6.  Google Scholar

[21]

M. Lenci, Infinite-volume mixing for dynamical systems preserving an infinite measure, Procedia IUTAM, 5 (2012), 204-219.  doi: 10.1016/j.piutam.2012.06.028.  Google Scholar

[22]

M. Lenci, Random walks in random environments without ellipticity, Stochastic Process. Appl., 123 (2013), 1750-1764.  doi: 10.1016/j.spa.2013.01.007.  Google Scholar

[23]

M. Lenci, Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.   Google Scholar

[24]

M. Lenci, A simple proof of the exactness of expanding maps of the interval with an indifferent fixed point, Chaos Solitons Fractals, 82 (2016), 148-154.  doi: 10.1016/j.chaos.2015.11.024.  Google Scholar

[25]

M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.  doi: 10.1007/BF00534111.  Google Scholar

[26]

T. Miernowski and A. Nogueira, Exactness of the Euclidean algorithm and of the Rauzy induction on the space of interval exchange transformations, Ergodic Theory Dynam. Systems, 33 (2013), 221-246.  doi: 10.1017/S014338571100085X.  Google Scholar

[27]

P. Nándori, Recurrence properties of a special type of heavy-tailed random walk, J. Stat. Phys., 142 (2011), 342-355.  doi: 10.1007/s10955-010-0116-4.  Google Scholar

[28]

D. Paulin and D. Szász, Locally perturbed random walks with unbounded jumps, J. Stat. Phys., 141 (2010), 1116-1130.  doi: 10.1007/s10955-010-0078-6.  Google Scholar

[29]

H. G. Schuster and W. Just, Deterministic Chaos: An Introduction 4th edition. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. doi: 10.1002/3527604804.  Google Scholar

[30]

A. N. Shiryayev, Probability Graduate Texts in Mathematics, 95. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4899-0018-0.  Google Scholar

[31]

P. Walters, An Introduction to Ergodic Theory Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[32]

A.Yu. Pilipenko and Yu.E. Prikhod'ko, On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point, Ukrainian Math. J., 67 (2015), 564-583.  doi: 10.1007/s11253-015-1101-5.  Google Scholar

show all references

References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[3]

R. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole, Israel J. Math., 16 (1973), 263-278.  doi: 10.1007/BF02756706.  Google Scholar

[4]

R. Artuso and G. Cristadoro, Weak chaos and anomalous transport: A deterministic approach, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 137-148.  doi: 10.1016/S1007-5704(03)00025-X.  Google Scholar

[5]

R. Artuso and G. Cristadoro, Anomalous transport: A deterministic approach, Phys. Rev. Lett. , 90 (2003), 244101. Google Scholar

[6]

G. Atkinson, Recurrence for co-cycles and random walks, J. London. Math. Soc.(2), 13 (1976), 486-488.  doi: 10.1112/jlms/s2-13.3.486.  Google Scholar

[7]

A. BianchiG. CristadoroM. Lenci and M. Ligabò, Random walks in a one-dimensional Lévy random environment, J. Stat. Phys., 163 (2016), 22-40.  doi: 10.1007/s10955-016-1469-0.  Google Scholar

[8]

A. Boyarsky and P. Góra, Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension Probability and its Applications. Birkhäuser, Boston, MA, 1997. doi: 10.1007/978-1-4612-2024-4.  Google Scholar

[9]

P. Bugiel, Approximation for the measures of ergodic transformations of the real line, Z. Wahrsch. Verw. Gebiete, 59 (1982), 27-38.  doi: 10.1007/BF00575523.  Google Scholar

[10]

P. Bugiel, On the exactness of a class of endomorphisms of the real line, Univ. Iagel. Acta Math., 25 (1985), 53-65.   Google Scholar

[11]

D. DolgopyatD. Szász and T. Varjú, Limit theorems for locally perturbed planar Lorentz processes, Duke Math. J., 148 (2009), 459-499.  doi: 10.1215/00127094-2009-031.  Google Scholar

[12]

R. G. Gallager, Stochastic Processes. Theory for Applications Cambridge University Press, Cambridge, 2013.  Google Scholar

[13]

A.B. Hajian and S. Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc., 110 (1964), 136-151.  doi: 10.1090/S0002-9947-1964-0154961-1.  Google Scholar

[14]

A. Iksanov and A. Yu. Pilipenko, A functional limit theorem for locally perturbed random walks, preprint, arXiv: 1504.06930. Google Scholar

[15]

G. KellerP. Howard and R. Klages, Continuity properties of transport coefficients in simple maps, Nonlinearity, 21 (2008), 1719-1743.  doi: 10.1088/0951-7715/21/8/003.  Google Scholar

[16]

R. Klages, Suppression and enhancement of diffusion in disordered dynamical systems Phys. Rev. E, 65 (2002), 055203(R). doi: 10.1103/PhysRevE.65.055203.  Google Scholar

[17]

M. Lenci, Aperiodic Lorentz gas: recurrence and ergodicity, Ergodic Theory Dynam. Systems, 23 (2003), 869-883.  doi: 10.1017/S0143385702001529.  Google Scholar

[18]

M. Lenci, Typicality of recurrence for Lorentz gases, Ergodic Theory Dynam. Systems, 26 (2006), 799-820.  doi: 10.1017/S0143385706000022.  Google Scholar

[19]

M. Lenci, Central Limit Theorem and recurrence for random walks in bistochastic random environments J. Math. Phys. , 49 (2008), 125213, 9pp. doi: 10.1063/1.3005226.  Google Scholar

[20]

M. Lenci, On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.  doi: 10.1007/s00220-010-1043-6.  Google Scholar

[21]

M. Lenci, Infinite-volume mixing for dynamical systems preserving an infinite measure, Procedia IUTAM, 5 (2012), 204-219.  doi: 10.1016/j.piutam.2012.06.028.  Google Scholar

[22]

M. Lenci, Random walks in random environments without ellipticity, Stochastic Process. Appl., 123 (2013), 1750-1764.  doi: 10.1016/j.spa.2013.01.007.  Google Scholar

[23]

M. Lenci, Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.   Google Scholar

[24]

M. Lenci, A simple proof of the exactness of expanding maps of the interval with an indifferent fixed point, Chaos Solitons Fractals, 82 (2016), 148-154.  doi: 10.1016/j.chaos.2015.11.024.  Google Scholar

[25]

M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.  doi: 10.1007/BF00534111.  Google Scholar

[26]

T. Miernowski and A. Nogueira, Exactness of the Euclidean algorithm and of the Rauzy induction on the space of interval exchange transformations, Ergodic Theory Dynam. Systems, 33 (2013), 221-246.  doi: 10.1017/S014338571100085X.  Google Scholar

[27]

P. Nándori, Recurrence properties of a special type of heavy-tailed random walk, J. Stat. Phys., 142 (2011), 342-355.  doi: 10.1007/s10955-010-0116-4.  Google Scholar

[28]

D. Paulin and D. Szász, Locally perturbed random walks with unbounded jumps, J. Stat. Phys., 141 (2010), 1116-1130.  doi: 10.1007/s10955-010-0078-6.  Google Scholar

[29]

H. G. Schuster and W. Just, Deterministic Chaos: An Introduction 4th edition. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. doi: 10.1002/3527604804.  Google Scholar

[30]

A. N. Shiryayev, Probability Graduate Texts in Mathematics, 95. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4899-0018-0.  Google Scholar

[31]

P. Walters, An Introduction to Ergodic Theory Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[32]

A.Yu. Pilipenko and Yu.E. Prikhod'ko, On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point, Ukrainian Math. J., 67 (2015), 564-583.  doi: 10.1007/s11253-015-1101-5.  Google Scholar

Figure 1.  A uniformly expanding Markov map ${\mathbb{R}} \to {\mathbb{R}}$.
Figure 2.  An example of a quasi-lift of an expanding circle map.
Figure 3.  A finite modification of a quasi-lift of a circle map, constructed with the procedure given in Section 3.2, for the case $\mu_o = m$.
Figure 4.  A map $T$ associated a random walk. The marks on the abscissa indicate the Markov intervals $I_{jk}$, while those on the ordinate represent the intervals $[k, k+1]$.
Figure 5.  A rough sketch of the map $T$ of Counterexample 2. The bold segments on the abscissa indicate the set $X$. The bold parts of the graph of $T$ represent $T|_X$, which is invertible.
[1]

Tomás Caraballo, Juan C. Jara, José A. Langa, José Valero. Morse decomposition of global attractors with infinite components. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2845-2861. doi: 10.3934/dcds.2015.35.2845

[2]

Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829

[3]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[4]

Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353

[5]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[6]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[7]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

[8]

Jose F. Alves; Stefano Luzzatto and Vilton Pinheiro. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electronic Research Announcements, 2003, 9: 26-31.

[9]

Almut Burchard, Gregory R. Chambers, Anne Dranovski. Ergodic properties of folding maps on spheres. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1183-1200. doi: 10.3934/dcds.2017049

[10]

Yuri Kozitsky, Krzysztof Pilorz. Random jumps and coalescence in the continuum: Evolution of states of an infinite particle system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 725-752. doi: 10.3934/dcds.2020059

[11]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[12]

Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689

[13]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[14]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[15]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[16]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[17]

Fernando J. Sánchez-Salas. Dimension of Markov towers for non uniformly expanding one-dimensional systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1447-1464. doi: 10.3934/dcds.2003.9.1447

[18]

Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929

[19]

Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3365-3390. doi: 10.3934/dcds.2013.33.3365

[20]

Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]