In this paper, we study the existence of SRB measures for infinite dimensional dynamical systems in a Banach space. We show that if the system has a partially hyperbolic attractor with nontrivial finite dimensional unstable directions, then it has an SRB measure.
| Citation: |
A. Blumenthal and L.-S. Young, Entropy, volume growth and SRB measures for Banach space mappings, Invent. Math., 207 (2017), 833-893, arXiv:1510.04312v1.
doi: 10.1007/s00222-016-0678-0.
|
|
C. Bonatti, L. Díaz and M. Viana,
Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005.
|
|
J.-P. Eckmann
and D. Ruelle
, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57 (1985)
, 617-656.
doi: 10.1103/RevModPhys.57.617.
|
|
J. K. Hale
, Attractors and dynamics in partial differential equations. From finite to infinite dimensional dynamical systems, (Cambridge, 1995,), NATO Sci. Ser. Ⅱ Math. Phys. Chem., Kluwer Acad. Publ., Dordrecht, 19 (2001)
, 85-112.
doi: 10.1007/978-94-010-0732-0_4.
|
|
D. Henry,
Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.
|
|
W. Huang and K. Lu, Entropy, Chaos and weak horseshoe for infinite dimensional random dynamical systems, XVIIth International Congress on Mathematical Physics, (2012), 281-281, arXiv: 1504.05275.
doi: 10.1142/9789814449243_0017.
|
|
F. Ledrappier
and L.-S. Young
, The metric entropy of diffeomorphisms, Ann. Math., 122 (1985)
, 509-574.
doi: 10.2307/1971329.
|
|
Z. Li
and L. Shu
, The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula, Discrete Contin. Dyn. Syst., 33 (2013)
, 4123-4155.
doi: 10.3934/dcds.2013.33.4123.
|
|
Z. Lian, P. Liu and K. Lu, SRB measures for a class of partially hyperbolic attractors in Hilbert spaces, J. Differential Equations, 261 (2016), 1532-1603, arXiv: 1508.03301.
doi: 10.1016/j.jde.2016.04.006.
|
|
Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space Memoirs of AMS., 206 (2010), vi+106 pp.
doi: 10.1090/S0065-9266-10-00574-0.
|
|
Z. Lian
and L.-S. Young
, Lyapunov exponents, periodic orbits and horseshoes for mappings of Hilbert spaces, Annales Henri Poincaré, 12 (2011)
, 1081-1108.
doi: 10.1007/s00023-011-0100-9.
|
|
K. Lu, Q. Wang and L. -S. Young, Strange attractors for periodically forced parabolic equations Mem. Amer. Math. Soc., 224 (2013), vi+85 pp.
doi: 10.1090/S0065-9266-2012-00669-1.
|
|
R. Mañé
, Lyapunov exponents and stable manifolds for compact transformations, Lecture Notes in Mathematics, Springer, 1007 (1983)
, 522-577.
doi: 10.1007/BFb0061433.
|
|
J. C. Álvarez Paiva
and A. C. Thompson
, Volumes on normed and Finsler spaces, Riemann-Finsler Geometry, MSRI Publications, 50 (2004)
, 1-48.
doi: 10.4171/PRIMS/123.
|
|
J. Palis
, A global perspective for non-conservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005)
, 485-507.
doi: 10.1016/j.anihpc.2005.01.001.
|
|
P. Pesin
, Characteristic Lyapunov exponents, and smooth ergodic theory, Russian Math. Surveys, 32 (1977)
, 55-112.
|
|
Ya. B. Pesin
and Ya. G. Sinai
, Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems, 2 (1982)
, 417-438.
doi: 10.1017/S014338570000170X.
|
|
M. Qian, J. -S. Xie and S. Zhu,
Smooth Ergodic Theory for Endomorphisms, Lecture Notes in Mathematics, 1978, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-01954-8.
|
|
V. A. Rokhlin, On the fundamental ideas of measure theory,
Amer. Math. Soc. Translation, 71 (1952), 55 pp.
|
|
D. Ruelle
, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Statist. Phys., 95 (1999)
, 393-468.
doi: 10.1023/A:1004593915069.
|
|
D. Ruelle
, Characteristic exponents and invariant manifolds in Hilbert space, Ann. Math., 115 (1982)
, 243-290.
doi: 10.2307/1971392.
|
|
R. Temam,
Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.
|
|
P. Thieullen
, Asymptotically compact dynamic bundles, Lyapunov exponents, entropy, dimension, Ann. Inst. H. Poincaré, Anal. Non linéaire, 4 (1987)
, 49-97.
doi: 10.1016/S0294-1449(16)30373-0.
|
|
L.-S. Young
, What are SRB measures, and which dynamical systems have them? Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays, J. Statist. Phys., 108 (2002)
, 733-754.
doi: 10.1023/A:1019762724717.
|
|
L.-S. Young
, Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems, 6 (1986)
, 311-319.
doi: 10.1017/S0143385700003473.
|